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Abstract

Knowledge bases provide applications with the benefit oilyeascessible, sys-
tematic relational knowledge but often suffer in practicen their incompleteness
and lack of knowledge of new entities and relations. Muchkaas focused on
building or extending them by finding patterns in large ur@ated text corpora.
In contrast, here we mainly aim to complete a knowledge bageddicting addi-
tional true relationships between entities, based on gdinations that can be dis-
cerned in the given knowledgebase. We introduce a neursbteretwork (NTN)
model which predicts new relationship entries that can lukeddo the database.
This model can be improved by initializing entity represgiuns with word vec-
tors learned in an unsupervised fashion from text, and wioémgcthis, existing
relations can even be queried for entities that were notepteis the database.
Our model generalizes and outperforms existing modelsifsiroblem, and can
classify unseen relationships in WordNet with an accurd@bd%.

1 Introduction

Ontologies and knowledge bases such as WordNet [1] or Yejgar§2extremely useful resources
for query expansiori [3], coreference resolution [4], gquesanswering (Siri), information retrieval
(Google Knowledge Graph), or generally providing inferewer structured knowledge to users.
Much work has focused on extending existing knowledge bfit$5 2] using patterns or classifiers
applied to large corpora.

We introduce a model that can accurately learn to add additfacts to a database using only that
database. This is achieved by representing each entitygaeh object or individual) in the database
by a vector that can capture facts and their certainty atbaitentity. Each relation is defined by
the parameters of a novel neural tensor network which calicitkprelate two entity vectors and is
more powerful than a standard neural network layer.

Furthermore, our model allows us to ask whether even esfitiat were not in the database are
in certain relationships by simply using distributionalndwectors. These vectors are learned by a
neural network model[7] using unsupervised text corpoch sis Wikipedia. They capture syntactic
and semantic information and allow us to extend the datalakeut any manually designed rules
or additional parsing of other textual resources.

The model outperforms previously introduced related modath as that of Bordes et &l [8]. We
evaluate on a heldout set of relationships in WordNet. The@cy for predicting unseen relations
is 75.8%. We also evaluate in terms of ranking. For WordNwedre are 38,696 different entities
and we use 11 relationship types. On average for each léfy émere are 100 correct entities in a
specific relationship. For instanadgg has many hundreds of hyponyms suclpagpy, barker or
dachshund. In 20.9% of the relationship triplets, the model ranks therect test entity in the top
100 out of 38,696 possible entities.
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2 Related Work

There is a vast amount of work extending knowledge baseg @siternal corpora [%,6] 2], among
many others. In contrast, little work has been done in eidassased purely on the knowledge
base itself. The work closest to ours is that by Bordes ei@l.\We implement their approach and
compare to it directly. Our model outperforms it by a sigrificmargin in terms of both accuracy
and ranking. Both models can benefit from initializationhainsupervised word vectors.

Another related approach is that by Sutskever ef al. [10] wseotensor factorization and Bayesian
clustering for learning relational structures. Insteactloitering the entities in a nonparametric
Bayesian framework we rely purely on learned entity vectditseir computation of the truth of a
relation can be seen as a special case of our proposed mastelad of using MCMC for inference,
we use standard backpropagation which is modified for the&ld@nsor Network. Lastly, we do
not require multiple embeddings for each entity. Insteaglcansider the subunits (space separated
words) of entity names. This allows more statistical sttbrig be shared among entities.

Many methods that use knowledge bases as features suchléscild benefit from a method
that maps the provided information into vector represéiat We learn to modify unsupervised
word representations via grounding in world knowledge s®Essentially allows us to analyze word
embeddings and query them for specific relations. Furthezntioe resulting vectors could be used
in other tasks such as NER [7] or relation classification iturad language [11].

Lastly, Ranzato et all_[12] introduced a factored 3-way Retstd Boltzmann Machine which is also
parameterized by a tensor.

3 Neural Tensor Networks

In this section we describe the full neural tensor network.B&Qgin by describing the representation
of entities and continue with the model that learns entilgtienships.

We compare using both randomly initialized word vectors prettrainedl 00-dimensional word
vectors from the unsupervised model of Collobert and Weft8ii7]. Using free Wikipedia text,
this model learns word vectors by predicting how likely ifas each word to occur in its context.
The model uses both local context in the window around eaald and global document context.
Similar to other local co-occurrence based vector spaceetapthe resulting word vectors cap-
ture distributional syntactic and semantic informatior Further details and evaluations of these
embeddings, see [14,]13,]15].

For cases where the entity name has multiple words, we siaygsage the word vectors.

The Neural Tensor Network (NTN) replaces the standard titegeer with a bilinear layer that di-
rectly relates the two entity vectors. Lat e; € R be the vector representations of the two entities.
We can compute a score of how plausible they are in a certitiameshipR by the following NTN-
based function:

g(elv Ra 62) = UTf <€?W][%1:k]62 + VR |:z;:| + bR> ) (1)
wheref = tanh is a standard nonlinearity. We defifigl':¥] ¢ R?*¢** as a tensor and the bilinear
tensor product results in a vectore R*, where each entry is computed by one slice of the tensor:

hi = €{W[i]€2. (2)
The remaining parameters for relatiéhare the standard form of a neural netwolk; € R**2¢
andU € R¥ bp € R,

The main advantage of this model is that it can directly eslag¢ two inputs instead of only implicitly
through the nonlinearity. The bilinear model for truth vedun [10] becomes a special case of this
model withVg = 0,bgr = 0,k = 1, f = identity.

In order to train the parameteVg, U, V, £, b, we minimize the following contrastive max-margin
objective:

JW,U,V,E,0) =33 max(0,1 - g(ef”, RO, el) + g(ef”, RD ), (3)

i=1 c=1



whereN is the number of training triplets and we score the corrdettitn triplets higher than a
corrupted one in which one of the entities was replaced witthdom entity. For each correct triplet
we sample” random corrupted entities.

The model is trained by taking gradients with respect to treedets of parameters and using mini-
batched L-BFGS.

4 Experiments

In our experiments, we follow the data settings of WordNefdh There are a total of 38,696
different entities and 11 relations. We use 112,581 triplet training, 2,609 for the development
set and 10,544 for final testing.

The WordNet relationships we consider dras instance, type of, member meronym, member
holonym, part of, has part, subordinate instance of, domain region, synset domain region, similar
to, domain topic.

We compare our model with two models in Bordes et(al. [9, 8Jicivihave the same goal as ours.
The model of[[9] has the following scoring function:

gle1, R,e2) = ||Wrerrer — Wrrighte2||1, (4)

whereWrg iet, Wr.right € R4 The model of[[8] also maps each relation type to an embedding
er € R? and scores the relationships by:

gler, R e2) = —(Wiey @ Wrer1€r + b1) - (Waea @ Wier2er + b2), (5)

whereWy, Wier 1, Wa, Wyer2 € R¥*4 by by € RYXL. In the comparisons below, we call these
two models thesimilarity model and theHadamard model respectively. While our function scores
correct triplets highly, these two models score correpldts lower. All models are trained in a
contrastive max-margin objective functions.

Our goal is to predict “correct” relatior(g;, R, e2) in the testing data. We can compute a score for
each triplet(eq, R, e2). We can consider either just a classification accuracytrasub whether the
relation holds, or look at a ranking e$, for considering relative confidence in particular relago
holding. We use a different evaluation set from Bordes ef@}lbecause it has became apparent to
us and them that there were issues of overlap between thigiing and testing sets which impacted
the quality and interpretability of their evaluation.

Ranking

For each triplete;, R, e2), we compute the scoige;, R, ) for all other entities in the knowledge
basee € E. We then sort values by decreasing order and report the righle gorrect entityes.

For WordNet the total number of entities|i&| = 38, 696. Some of the questions relating to triplets
are of the form “A is a type of ?” or “A has instance ?” Since #hésve multiple correct answers,
we report the percentage of times thatis ranked in the tofg 00 of the list (recall @ 100). The

higher this number, the more often the specific correct tastyehas likely been correctly estimated.

After cross-validation of the hyperparameters of both niodea the development fold, our neural
tensor net obtains a ranking recall score of 20.9% whileithédazity model achieves 10.6%, and the
Hadamard model achieves only 7.4%. The best performante™TN with random initialization
instead of the semantic vectors drops to 16.9% and the sitpitaodel and the Hadamard model
only achieve 5.7% and 7.1%.

Classification

In this experiment, we ask the model whether any arbitrapietrof entities and relations is true or
not. With the help of the large vocabulary of semantic wordtoes, we can query whether certain
WordNet relationships hold or not even for entities thateveot originally in WordNet.

We use the development fold to find a threshBjgfor each relation such that ff(eq, R, e2) > T,
the relation(e;, R, e2) holds, otherwise it is considered false. In order to creatgtive examples,



we randomly switch entities and relations from correctitgstriplets, resulting in a total o x
10, 544 triplets. The final accuracy is based on how many of of tripte classified correctly.

The Neural Tensor Network achieves an accuracy of 75.8%seithantically initialized entity vec-
tors and 70.0% with randomly initialized ones. In comparisthe similarity based model only
achieve 66.7% and 51.6%, the Hadamard model achieve 71.8%8a2% with the same setup. All
models improve in performance if entities are represensegineaverage of their word vectors but
we will leave experimentation with this setup to future work

5 Conclusion

We introduced a new model based on Neural Tensor NetworKikd jirevious models for predict-
ing relationships purely using entity representationsriowdedge bases, our model allows direct
interaction of entity vectors via a tensor. This architeetallows for much better performance in
terms of both ranking correct answers out of tens of thousahplossible ones and predicting unseen
relationships between entities. It enables the extendiata@mbases even without external textual
resources but can also benefit from unsupervised large @pe@n without manually designed
extraction rules.
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