
ar
X

iv
:1

30
1.

36
18

v2
 [

cs
.C

L]
 1

6
M

ar
 2

01
3

Learning New Facts From Knowledge Bases With
Neural Tensor Networks and Semantic Word Vectors

Danqi Chen, Richard Socher, Christopher D. Manning, AndrewY. Ng
Computer Science Department, Stanford University, Stanford, CA 94305, USA

{danqi,manning,ang}@stanford.edu, richard@socher.org

Abstract

Knowledge bases provide applications with the benefit of easily accessible, sys-
tematic relational knowledge but often suffer in practice from their incompleteness
and lack of knowledge of new entities and relations. Much work has focused on
building or extending them by finding patterns in large unannotated text corpora.
In contrast, here we mainly aim to complete a knowledge base by predicting addi-
tional true relationships between entities, based on generalizations that can be dis-
cerned in the given knowledgebase. We introduce a neural tensor network (NTN)
model which predicts new relationship entries that can be added to the database.
This model can be improved by initializing entity representations with word vec-
tors learned in an unsupervised fashion from text, and when doing this, existing
relations can even be queried for entities that were not present in the database.
Our model generalizes and outperforms existing models for this problem, and can
classify unseen relationships in WordNet with an accuracy of 75.8%.

1 Introduction

Ontologies and knowledge bases such as WordNet [1] or Yago [2] are extremely useful resources
for query expansion [3], coreference resolution [4], question answering (Siri), information retrieval
(Google Knowledge Graph), or generally providing inference over structured knowledge to users.
Much work has focused on extending existing knowledge bases[5, 6, 2] using patterns or classifiers
applied to large corpora.

We introduce a model that can accurately learn to add additional facts to a database using only that
database. This is achieved by representing each entity (i.e., each object or individual) in the database
by a vector that can capture facts and their certainty about that entity. Each relation is defined by
the parameters of a novel neural tensor network which can explicitly relate two entity vectors and is
more powerful than a standard neural network layer.

Furthermore, our model allows us to ask whether even entities that were not in the database are
in certain relationships by simply using distributional word vectors. These vectors are learned by a
neural network model [7] using unsupervised text corpora such as Wikipedia. They capture syntactic
and semantic information and allow us to extend the databasewithout any manually designed rules
or additional parsing of other textual resources.

The model outperforms previously introduced related models such as that of Bordes et al. [8]. We
evaluate on a heldout set of relationships in WordNet. The accuracy for predicting unseen relations
is 75.8%. We also evaluate in terms of ranking. For WordNet, there are 38,696 different entities
and we use 11 relationship types. On average for each left entity there are 100 correct entities in a
specific relationship. For instance,dog has many hundreds of hyponyms such aspuppy, barker or
dachshund. In 20.9% of the relationship triplets, the model ranks the correct test entity in the top
100 out of 38,696 possible entities.

1

http://arxiv.org/abs/1301.3618v2

2 Related Work

There is a vast amount of work extending knowledge bases using external corpora [5, 6, 2], among
many others. In contrast, little work has been done in extensions based purely on the knowledge
base itself. The work closest to ours is that by Bordes et al. [9]. We implement their approach and
compare to it directly. Our model outperforms it by a significant margin in terms of both accuracy
and ranking. Both models can benefit from initialization with unsupervised word vectors.

Another related approach is that by Sutskever et al. [10] whouse tensor factorization and Bayesian
clustering for learning relational structures. Instead ofclustering the entities in a nonparametric
Bayesian framework we rely purely on learned entity vectors. Their computation of the truth of a
relation can be seen as a special case of our proposed model. Instead of using MCMC for inference,
we use standard backpropagation which is modified for the Neural Tensor Network. Lastly, we do
not require multiple embeddings for each entity. Instead, we consider the subunits (space separated
words) of entity names. This allows more statistical strength to be shared among entities.

Many methods that use knowledge bases as features such as [3,4] could benefit from a method
that maps the provided information into vector representations. We learn to modify unsupervised
word representations via grounding in world knowledge. This essentially allows us to analyze word
embeddings and query them for specific relations. Furthermore, the resulting vectors could be used
in other tasks such as NER [7] or relation classification in natural language [11].

Lastly, Ranzato et al. [12] introduced a factored 3-way Restricted Boltzmann Machine which is also
parameterized by a tensor.

3 Neural Tensor Networks

In this section we describe the full neural tensor network. We begin by describing the representation
of entities and continue with the model that learns entity relationships.

We compare using both randomly initialized word vectors andpre-trained100-dimensional word
vectors from the unsupervised model of Collobert and Weston[13, 7]. Using free Wikipedia text,
this model learns word vectors by predicting how likely it isfor each word to occur in its context.
The model uses both local context in the window around each word and global document context.
Similar to other local co-occurrence based vector space models, the resulting word vectors cap-
ture distributional syntactic and semantic information. For further details and evaluations of these
embeddings, see [14, 13, 15].

For cases where the entity name has multiple words, we simplyaverage the word vectors.

The Neural Tensor Network (NTN) replaces the standard linear layer with a bilinear layer that di-
rectly relates the two entity vectors. Lete1, e2 ∈ R

d be the vector representations of the two entities.
We can compute a score of how plausible they are in a certain relationshipR by the following NTN-
based function:

g(e1, R, e2) = UT f

(

eT1 W
[1:k]
R e2 + VR

[

e1
e2

]

+ bR

)

, (1)

wheref = tanh is a standard nonlinearity. We defineW [1:k] ∈ R
d×d×k as a tensor and the bilinear

tensor product results in a vectorh ∈ R
k, where each entry is computed by one slice of the tensor:

hi = eT1 W
[i]e2. (2)

The remaining parameters for relationR are the standard form of a neural network:VR ∈ R
k×2d

andU ∈ R
k, bR ∈ R

k.

The main advantage of this model is that it can directly relate the two inputs instead of only implicitly
through the nonlinearity. The bilinear model for truth values in [10] becomes a special case of this
model withVR = 0, bR = 0, k = 1, f = identity.

In order to train the parametersW,U, V,E, b, we minimize the following contrastive max-margin
objective:

J(W,U, V,E, b) =
N
∑

i=1

C
∑

c=1

max(0, 1− g(e
(i)
1 , R(i), e

(i)
2) + g(e

(i)
1 , R(i), ec)), (3)

2

whereN is the number of training triplets and we score the correct relation triplets higher than a
corrupted one in which one of the entities was replaced with arandom entity. For each correct triplet
we sampleC random corrupted entities.

The model is trained by taking gradients with respect to the five sets of parameters and using mini-
batched L-BFGS.

4 Experiments

In our experiments, we follow the data settings of WordNet in[9]. There are a total of 38,696
different entities and 11 relations. We use 112,581 triplets for training, 2,609 for the development
set and 10,544 for final testing.

The WordNet relationships we consider arehas instance, type of, member meronym, member
holonym, part of, has part, subordinate instance of, domain region, synset domain region, similar
to, domain topic.

We compare our model with two models in Bordes et al. [9, 8], which have the same goal as ours.
The model of [9] has the following scoring function:

g(e1, R, e2) = ‖WR,lefte1 −WR,righte2‖1, (4)

whereWR,left,WR,right ∈ R
d×d. The model of [8] also maps each relation type to an embedding

eR ∈ R
d and scores the relationships by:

g(e1, R, e2) = −(W1e1 ⊗Wrel,1eR + b1) · (W2e2 ⊗Wrel,2eR + b2), (5)

whereW1,Wrel,1,W2,Wrel,2 ∈ R
d×d, b1, b2 ∈ R

d×1. In the comparisons below, we call these
two models thesimilarity model and theHadamard model respectively. While our function scores
correct triplets highly, these two models score correct triplets lower. All models are trained in a
contrastive max-margin objective functions.

Our goal is to predict “correct” relations(e1, R, e2) in the testing data. We can compute a score for
each triplet(e1, R, e2). We can consider either just a classification accuracy result as to whether the
relation holds, or look at a ranking ofe2, for considering relative confidence in particular relations
holding. We use a different evaluation set from Bordes et al.[9] because it has became apparent to
us and them that there were issues of overlap between their training and testing sets which impacted
the quality and interpretability of their evaluation.

Ranking

For each triplet(e1, R, e2), we compute the scoreg(e1, R, e) for all other entities in the knowledge
basee ∈ E. We then sort values by decreasing order and report the rank of the correct entitye2.

For WordNet the total number of entities is|E| = 38, 696. Some of the questions relating to triplets
are of the form “A is a type of ?” or “A has instance ?” Since these have multiple correct answers,
we report the percentage of times thate2 is ranked in the top100 of the list (recall @ 100). The
higher this number, the more often the specific correct test entity has likely been correctly estimated.

After cross-validation of the hyperparameters of both models on the development fold, our neural
tensor net obtains a ranking recall score of 20.9% while the similarity model achieves 10.6%, and the
Hadamard model achieves only 7.4%. The best performance of the NTN with random initialization
instead of the semantic vectors drops to 16.9% and the similarity model and the Hadamard model
only achieve 5.7% and 7.1%.

Classification

In this experiment, we ask the model whether any arbitrary triplet of entities and relations is true or
not. With the help of the large vocabulary of semantic word vectors, we can query whether certain
WordNet relationships hold or not even for entities that were not originally in WordNet.

We use the development fold to find a thresholdTR for each relation such that iff(e1, R, e2) ≥ TR,
the relation(e1, R, e2) holds, otherwise it is considered false. In order to create negative examples,

3

we randomly switch entities and relations from correct testing triplets, resulting in a total of2 ×
10, 544 triplets. The final accuracy is based on how many of of triplets are classified correctly.

The Neural Tensor Network achieves an accuracy of 75.8% withsemantically initialized entity vec-
tors and 70.0% with randomly initialized ones. In comparison, the similarity based model only
achieve 66.7% and 51.6%, the Hadamard model achieve 71.9% and 68.2% with the same setup. All
models improve in performance if entities are represented as an average of their word vectors but
we will leave experimentation with this setup to future work.

5 Conclusion

We introduced a new model based on Neural Tensor Networks. Unlike previous models for predict-
ing relationships purely using entity representations in knowledge bases, our model allows direct
interaction of entity vectors via a tensor. This architecture allows for much better performance in
terms of both ranking correct answers out of tens of thousands of possible ones and predicting unseen
relationships between entities. It enables the extension of databases even without external textual
resources but can also benefit from unsupervised large corpora even without manually designed
extraction rules.

References

[1] G.A. Miller. WordNet: A Lexical Database for English.Communications of the ACM, 1995.

[2] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge. InProceedings of the
16th international conference on World Wide Web, 2007.

[3] J. Graupmann, R. Schenkel, and G. Weikum. The SphereSearch engine for unified ranked retrieval of
heterogeneous XML and web documents. InProceedings of the 31st international conference on Very
large data bases, VLDB, 2005.

[4] V. Ng and C. Cardie. Improving machine learning approaches to coreference resolution. InACL, 2002.

[5] R. Snow, D. Jurafsky, and A. Y. Ng. Learning syntactic patterns for automatic hypernym discovery. In
NIPS, 2005.

[6] A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open information extraction. InEMNLP,
2011.

[7] J. Turian, L. Ratinov, and Y. Bengio. Word representations: a simple and general method for semi-
supervised learning. InProceedings of ACL, pages 384–394, 2010.

[8] A. Bordes, X. Glorot, J. Weston, and Y. Bengio. Joint Learning of Words and Meaning Representations
for Open-Text Semantic Parsing.AISTATS, 2012.

[9] A. Bordes, J. Weston, R. Collobert, and Y. Bengio. Learning structured embeddings of knowledge bases.
In AAAI, 2011.

[10] I. Sutskever, R. Salakhutdinov, and J. B. Tenenbaum. Modelling relational data using Bayesian clustered
tensor factorization. InNIPS, 2009.

[11] R. Socher, B. Huval, C. D. Manning, and A. Y. Ng. SemanticCompositionality Through Recursive
Matrix-Vector Spaces. InEMNLP, 2012.

[12] M. Ranzato and A. Krizhevsky G. E. Hinton. Factored 3-Way Restricted Boltzmann Machines For Mod-
eling Natural Images.AISTATS, 2010.

[13] R. Collobert and J. Weston. A unified architecture for natural language processing: deep neural networks
with multitask learning. InICML, 2008.

[14] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language model.J. Mach.
Learn. Res., 3, March 2003.

[15] E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng. Improving Word Representations via Global
Context and Multiple Word Prototypes. InACL, 2012.

4

	1 Introduction
	2 Related Work
	3 Neural Tensor Networks
	4 Experiments
	5 Conclusion

