Dynamic Pooling and Unfolding Recursive
Autoencoders for Paraphrase Detection

Richard Socher, Eric H. Huang, Jeffrey Pennington®, Andrew Y. Ng, Christopher D. Manning
Computer Science Department, Stanford University, Stanford, CA 94305, USA
*SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA

richard@socher.org, {ehhuang, jpennin,ang,manning}@stanford.edu

Abstract

Paraphrase detection is the task of examining two sentences and determining
whether they have the same meaning. In order to obtain high accuracy on this
task, thorough syntactic and semantic analysis of the two statements is needed.
We introduce a method for paraphrase detection based on recursive autoencoders
(RAE). Our unsupervised RAEs are based on a novel unfolding objective and learn
feature vectors for phrases in syntactic trees. These features are used to measure
the word- and phrase-wise similarity between two sentences. Since sentences may
be of arbitrary length, the resulting matrix of similarity measures is of variable
size. We introduce a novel dynamic pooling layer which computes a fixed-sized
representation from the variable-sized matrices. The pooled representation is then
used as input to a classifier. Our method outperforms other state-of-the-art ap-
proaches on the challenging MSRP paraphrase corpus.

1 Introduction

Paraphrase detection determines whether two phrases of arbitrary length and form capture the same
meaning. Identifying paraphrases is an important task that is used in information retrieval, question
answering [1], text summarization, plagiarism detection [2] and evaluation of machine translation
[3], among others. For instance, in order to avoid adding redundant information to a summary one
would like to detect that the following two sentences are paraphrases:

S1 The judge also refused to postpone the trial date of Sept. 29.
S2 Obus also denied a defense motion to postpone the September trial date.

We present a joint model that incorporates the similarities between both single word features as well
as multi-word phrases extracted from the nodes of parse trees. Our model is based on two novel
components as outlined in Fig. 1. The first component is an unfolding recursive autoencoder (RAE)
for unsupervised feature learning from unlabeled parse trees. The RAE is a recursive neural network.
It learns feature representations for each node in the tree such that the word vectors underneath each
node can be recursively reconstructed.

These feature representations are used to compute a similarity matrix that compares both the single
words as well as all nonterminal node features in both sentences. In order to keep as much of the
resulting global information of this comparison as possible and deal with the arbitrary length of
the two sentences, we then introduce our second component: a new dynamic pooling layer which
outputs a fixed-size representation. Any classifier such as a softmax classifier can then be used to
classify whether the two sentences are paraphrases or not.

We first describe the unsupervised feature learning with RAEs followed by a description of pooling
and classification. In experiments we show qualitative comparisons of different RAE models and de-
scribe our state-of-the-art results on the Microsoft Research Paraphrase (MSRP) Corpus introduced
by Dolan et al. [4]. Lastly, we discuss related work.
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Figure 1: An overview of our paraphrase model. The recursive autoencoder learns phrase features
for each node in a parse tree. The distances between all nodes then fill a similarity matrix whose
size depends on the length of the sentences. Using a novel dynamic pooling layer we can compare
the variable-sized sentences and classify pairs as being paraphrases or not.

2 Recursive Autoencoders

In this section we describe two variants of unsupervised recursive autoencoders which can be used
to learn features from parse trees. The RAE aims to find vector representations for variable-sized
phrases spanned by each node of a parse tree. These representations can then be used for subsequent
supervised tasks. Before describing the RAE, we briefly review neural language models which
compute word representations that we give as input to our algorithm.

2.1 Neural Language Models

The idea of neural language models as introduced by Bengio et al. [5] is to jointly learn an em-
bedding of words into an n-dimensional vector space and to use these vectors to predict how likely
a word is given its context. Collobert and Weston [6] introduced a new neural network model to
compute such an embedding. When these networks are optimized via gradient ascent the derivatives
modify the word embedding matrix I € R™*IVI, where || is the size of the vocabulary. The word
vectors inside the embedding matrix capture distributional syntactic and semantic information via
the word’s co-occurrence statistics. For further details and evaluations of these embeddings, see
[5,6,7,8].

Once this matrix is learned on an unlabeled corpus, we can use it for subsequent tasks by using each
word’s vector (a column in L) to represent that word. In the remainder of this paper, we represent a
sentence (or any n-gram) as an ordered list of these vectors (1, . .., Z;,). This word representation
is better suited for autoencoders than the binary number representations used in previous related
autoencoder models such as the recursive autoassociative memory (RAAM) model of Pollack [9, 10]
or recurrent neural networks [11] since the activations are inherently continuous.

2.2 Recursive Autoencoder

Fig. 2 (left) shows an instance of a recursive autoencoder (RAE) applied to a given parse tree as
introduced by [12]. Unlike in that work, here we assume that such a tree is given for each sentence by
a parser. Initial experiments showed that having a syntactically plausible tree structure is important
for paraphrase detection. Assume we are given a list of word vectors © = (x1, ..., x,,) as described
in the previous section. The binary parse tree for this input is in the form of branching triplets of
parents with children: (p — cjc2). The trees are given by a syntactic parser. Each child can be
either an input word vector x; or a nonterminal node in the tree. For both examples in Fig. 2, we
have the following triplets: ((y1 — x223), (Y2 — T1y1)), Yo,y € R™.

Given this tree structure, we can now compute the parent representations. The first parent vector
p = vy is computed from the children (c1, c2) = (2, 23) by one standard neural network layer:

p = f(Welei;ee] +b), )

where [c1; ¢2] is simply the concatenation of the two children, f an element-wise activation function
such as tanh and W, € R™*?" the encoding matrix that we want to learn. One way of assessing
how well this n-dimensional vector represents its direct children is to decode their vectors in a
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Figure 2: Two autoencoder models with details of the reconstruction at node y». For simplicity we
left out the reconstruction layer at the first node y; which is the same standard autoencoder for both
models. Left: A standard autoencoder that tries to reconstruct only its direct children. Right: The
unfolding autoencoder which tries to reconstruct all leaf nodes underneath each node.

reconstruction layer and then to compute the Euclidean distance between the original input and its
reconstruction:
2

[ciica] = f(Wap+ ba) Erec(p) = llle1s c2] — [e15 ch]l]” )
In order to apply the autoencoder recursively, the same steps repeat. Now that y; is given, we can
use Eq. 1 to compute y, by setting the children to be (¢1,¢2) = (x1,y1). Again, after computing
the intermediate parent vector p = y», we can assess how well this vector captures the content of the
children by computing the reconstruction error as in Eq. 2. The process repeats until the full tree is
constructed and each node has an associated reconstruction error.

During training, the goal is to minimize the reconstruction error of all input pairs at nonterminal
nodes p in a given parse tree 7 :

ET'CC(T) = Z Erec(p) (3)

pET

For the example in Fig. 2 (left), we minimize E,ec(T) = Erec(y1) + Erec(y2)-

Since the RAE computes the hidden representations it then tries to reconstruct, it could potentially
lower reconstruction error by shrinking the norms of the hidden layers. In order to prevent this, we
add a length normalization layer p = p/||p|| to this RAE model (referred to as the standard RAE).
Another more principled solution is to use a model in which each node tries to reconstruct its entire
subtree and then measure the reconstruction of the original leaf nodes. Such a model is described in
the next section.

2.3 Unfolding Recursive Autoencoder

The unfolding RAE has the same encoding scheme as the standard RAE. The difference is in the
decoding step which tries to reconstruct the entire spanned subtree underneath each node as shown
in Fig. 2 (right). For instance, at node ys, the reconstruction error is the difference between the
leaf nodes underneath that node [x1;z2; 3] and their reconstructed counterparts [x}; z5; x5]. The
unfolding produces the reconstructed leaves by starting at y and computing

(215 91) = fF(Wayz + ba). “)
Then it recursively splits ¢} again to produce vectors
(w35 23] = f(Way' + ba). ©)

In general, we repeatedly use the decoding matrix W, to unfold each node with the same tree
structure as during encoding. The reconstruction error is then computed from a concatenation of the
word vectors in that node’s span. For a node y that spans words ¢ to j:

Erec(yiij) = ||[ws -5 25] = 2555 2f] | |2 ) (6)
The unfolding autoencoder essentially tries to encode each hidden layer such that it best reconstructs
its entire subtree to the leaf nodes. Hence, it will not have the problem of hidden layers shrinking
in norm. Another potential problem of the standard RAE is that it gives equal weight to the last
merged phrases even if one is only a single word (in Fig. 2, z; and y; have similar weight in the last
merge). In contrast, the unfolding RAE captures the increased importance of a child when the child
represents a larger subtree.



2.4 Deep Recursive Autoencoder

Both types of RAE can be extended to have multiple encoding layers at each node in the tree. Instead
of transforming both children directly into parent p, we can have another hidden layer h in between.
While the top layer at each node has to have the same dimensionality as each child (in order for
the same network to be recursively compatible), the hidden layer may have arbitrary dimensionality.
For the two-layer encoding network, we would replace Eq. 1 with the following:

ho= fWPersea] +00Y) (7)
2.5 RAE Training p = fWEh+b(). ®)

For training we use a set of parse trees and then minimize the sum of all nodes’ reconstruction errors.
We compute the gradient efficiently via backpropagation through structure [13]. Even though the
objective is not convex, we found that L-BFGS run with mini-batch training works well in practice.
Convergence is smooth and the algorithm typically finds a good locally optimal solution.

After the unsupervised training of the RAE, we demonstrate that the learned feature representations
capture syntactic and semantic similarities and can be used for paraphrase detection.

3 An Architecture for Variable-Sized Similarity Matrices

Now that we have described the unsupervised feature learning, we explain how to use
these features to classify sentence pairs as being in a paraphrase relationship or not.

3.1 Computing Sentence Similarity Matrices

Our method incorporates both single word and phrase similarities
in one framework. First, the RAE computes phrase vectors for the
nodes in a given parse tree. We then compute Euclidean distances
between all word and phrase vectors of the two sentences. These
distances fill a similarity matrix S as shown in Fig. 1. For comput-
ing the similarity matrix, the rows and columns are first filled by the
words in their original sentence order. We then add to each row and
column the nonterminal nodes in a depth-first, right-to-left order.

Simply extracting aggregate statistics of this table such as the av-
erage distance or a histogram of distances cannot accurately cap-
ture the global structure of the similarity comparison. For instance,
paraphrases often have low or zero Euclidean distances in elements  Figure 3: Example of the dy-
close to the diagonal of the similarity matrix. This happens when namic min-pooling layer find-
similar words align well between the two sentences. However, since  ing the smallest number in a
the matrix dimensions vary based on the sentence lengths one can- pooling window region of the
not simply feed the similarity matrix into a standard neural network  original similarity matrix S.
or classifier.

3.2 Dynamic Pooling

Consider a similarity matrix S generated by sentences of lengths n and m. Since the parse trees are
binary and we also compare all nonterminal nodes, S € RZ?=1x(2m=1) We would like to map S
into a matrix Spooled Of fixed size, n,, X n,,. Our first step in constructing such a map is to partition
the rows and columns of S into n,, roughly equal parts, producing an n,, x n,, grid.! We then define

Shooled t0 be the matrix of minimum values of each rectangular region within this grid, as shown in
Fig. 3.

The matrix Spooleq 10ses some of the information contained in the original similarity matrix but it still
captures much of its global structure. Since elements of S with small Euclidean distances show that

'The partitions will only be of equal size if 2n — 1 and 2m — 1 are divisible by n,,. We account for this in
the following way, although many alternatives are possible. Let the number of rows of S be R = 2n — 1. Each
pooling window then has | R/np | many rows. Let M = R mod n,, be the number of remaining rows. We
then evenly distribute these extra rows to the last M window regions which will have | R/n,| + 1 rows. The
same procedure applies to the number of columns for the windows. This procedure will have a slightly finer
granularity for the single word similarities which is desired for our task since word overlap is a good indicator
for paraphrases. In the rare cases when n, > R, the pooling layer needs to first up-sample. We achieve this by
simply duplicating pixels row-wise until R > n.



Center Phrase Recursive Average RAE Unfolding RAE

the U.S. the U.S. and German the Swiss the former U.S.
suffering low | suffering a 1.9 billion baht | suffering due to no fault of | suffering heavy casual-
morale UNK 76 million my own ties

to watch | to watch one Jordanian bor- | to watch television to watch a video
hockey der policeman stamp the Is-

raeli passports

advance to the
next round

advance to final qualifying
round in Argentina

advance to the final of the
UNK 1.1 million Kremlin
Cup

advance to the semis

a prominent po-
litical figure

such a high-profile figure

the second high-profile op-
position figure

a powerful business fig-
ure

Seventeen peo-
ple were killed

”Seventeen  people  were
killed, including a prominent
politician

Fourteen  people
killed

were

Fourteen people were
killed

conditions  of
his release

“conditions of peace, social
stability and political har-
mony ”

conditions of peace, social
stability and political har-
mony

negotiations for their
release

Table 1: Nearest neighbors of randomly chosen phrases. Recursive averaging and the standard RAE
focus mostly on the last merged words and incorrectly add extra information. The unfolding RAE
captures most closely both syntactic and semantic similarities.

there are similar words or phrases in both sentences, we keep this information by applying a min
function to the pooling regions. Other functions, like averaging, are also possible, but might obscure
the presence of similar phrases. This dynamic pooling layer could make use of overlapping pooling
regions, but for simplicity, we consider only non-overlapping pooling regions. After pooling, we
normalize each entry to have 0 mean and variance 1.

4 Experiments

For unsupervised RAE training we used a subset of 150,000 sentences from the NYT and AP sec-
tions of the Gigaword corpus. We used the Stanford parser [14] to create the parse trees for all
sentences. For initial word embeddings we used the 100-dimensional vectors computed via the
unsupervised method of Collobert and Weston [6] and provided by Turian et al. [8].

For all paraphrase experiments we used the Microsoft Research paraphrase corpus (MSRP) intro-
duced by Dolan et al. [4]. The dataset consists of 5,801 sentence pairs. The average sentence
length is 21, the shortest sentence has 7 words and the longest 36. 3,900 are labeled as being in
the paraphrase relationship (technically defined as “mostly bidirectional entailment”). We use the
standard split of 4,076 training pairs (67.5% of which are paraphrases) and 1,725 test pairs (66.5%
paraphrases). All sentences were labeled by two annotators who agreed in 83% of the cases. A third
annotator resolved conflicts. During dataset collection, negative examples were selected to have
high lexical overlap to prevent trivial examples. For more information see [4, 15].

As described in Sec. 2.4, we can have deep RAE networks with two encoding or decoding layers.
The hidden RAE layer (see h in Eq. 8) was set to have 200 units for both standard and unfolding
RAEs.

4.1 Qualitative Evaluation of Nearest Neighbors

In order to show that the learned feature representations capture important semantic and syntactic
information even for higher nodes in the tree, we visualize nearest neighbor phrases of varying
length. After embedding sentences from the Gigaword corpus, we compute nearest neighbors for
all nodes in all trees. In Table 1 the first phrase is a randomly chosen phrase and the remaining
phrases are the closest phrases in the dataset that are not in the same sentence. We use Euclidean
distance between the vector representations. Note that we do not constrain the neighbors to have
the same word length. We compare the two autoencoder models above: RAE and unfolding RAE
without hidden layers, as well as a recursive averaging baseline (R.Avg). R.Avg recursively takes the
average of both child vectors in the syntactic tree. We only report results of RAEs without hidden
layers between the children and parent vectors. Even though the deep RAE networks have more
parameters to learn complex encodings they do not perform as well in this and the next task. This is
likely due to the fact that they get stuck in local optima during training.



Encoding Input Generated Text from Unfolded Reconstruction
a December summit a December summit

the first qualifying session the first qualifying session

English premier division club Irish presidency division club

the safety of a flight the safety of a flight

the signing of the accord the signing of the accord

the U.S. House of Representatives the U.S. House of Representatives
enforcement of the economic embargo enforcement of the national embargo

visit and discuss investment possibilities visit and postpone financial possibilities

the agreement it made with Malaysia the agreement it made with Malaysia

the full bloom of their young lives the lower bloom of their democratic lives

the organization for which the men work the organization for Romania the reform work
a pocket knife was found in his suitcase in the | a bomb corpse was found in the mission in the Irish
plane’s cargo hold car language case

Table 2: Original inputs and generated output from unfolding and reconstruction. Words are the
nearest neighbors to the reconstructed leaf node vectors. The unfolding RAE can reconstruct per-
fectly almost all phrases of 2 and 3 words and many with up to 5 words. Longer phrases start to get
incorrect nearest neighbor words. For the standard RAE good reconstructions are only possible for
two words. Recursive averaging cannot recover any words.

Table 1 shows several interesting phenomena. Recursive averaging is almost entirely focused on
an exact string match of the last merged words of the current phrase in the tree. This leads the
nearest neighbors to incorrectly add various extra information which would break the paraphrase
relationship if we only considered the top node vectors and ignores syntactic similarity. The standard
RAE does well though it is also somewhat focused on the last merges in the tree. Finally, the
unfolding RAE captures most closely the underlying syntactic and semantic structure.

4.2 Reconstructing Phrases via Recursive Decoding

In this section we analyze the information captured by the unfolding RAE’s 100-dimensional phrase
vectors. We show that these 100-dimensional vector representations can not only capture and mem-
orize single words but also longer, unseen phrases.

In order to show how much of the information can be recovered we recursively reconstruct sentences
after encoding them. The process is similar to unfolding during training. It starts from a phrase
vector of a nonterminal node in the parse tree. We then unfold the tree as given during encoding
and find the nearest neighbor word to each of the reconstructed leaf node vectors. Table 2 shows
that the unfolding RAE can very well reconstruct phrases of up to length five. No other method that
we compared had such reconstruction capabilities. Longer phrases retain some correct words and
usually the correct part of speech but the semantics of the words get merged. The results are from
the unfolding RAE that directly computes the parent representation as in Eq. 1.

4.3 Evaluation on Full-Sentence Paraphrasing

We now turn to evaluating the unsupervised features and our dynamic pooling architecture in our
main task of paraphrase detection.

Methods which are based purely on vector representations invariably lose some information. For
instance, numbers often have very similar representations, but even small differences are crucial to
reject the paraphrase relation in the MSRP dataset. Hence, we add three number features. The first is
1 if two sentences contain exactly the same numbers or no number and 0 otherwise, the second is 1
if both sentences contain the same numbers and the third is 1 if the set of numbers in one sentence is
a strict subset of the numbers in the other sentence. Since our pooling-layer cannot capture sentence
length or the number of exact string matches, we also add the difference in sentence length and the
percentage of words and phrases in one sentence that are in the other sentence and vice-versa. We
also report performance without these three features (only S).

For all of our models and training setups, we perform 10-fold cross-validation on the training set to
choose the best regularization parameters and n,, the size of the pooling matrix S € R™»*"». In
our best model, the regularization for the RAE was 102 and 0.05 for the softmax classifier. The
best pooling size was consistently n,, = 15, slightly less than the average sentence length. For all
sentence pairs (S7,S2) in the training data, we also added (S, S1) to the training set in order to
make the most use of the training data. This improved performance by 0.2%.



Model Acc. F1

All Paraphrase Baseline 66.5 799
Rus et al. (2008) [16] 70.6  80.5
Mihalcea et al. (2006) [17] 70.3 81.3
Islam and Inkpen (2007) [18] 726 81.3
Qiu et al. (2006) [19] 72.0 81.6
Fernando and Stevenson (2008) [20] 74.1 824
Wan et al. (2006) [21] 75.6  83.0
Das and Smith (2009) [15] 739 823

Das and Smith (2009) + 18 Features  76.1  82.7
Unfolding RAE + Dynamic Pooling ~ 76.8  83.6

Table 3: Test results on the MSRP paraphrase corpus. Comparisons of unsupervised feature learning
methods (left), similarity feature extraction and supervised classification methods (center) and other
approaches (right).

In our first set of experiments we compare several unsupervised feature learning methods: Recursive
averaging as defined in Sec. 4.1, standard RAEs and unfolding RAEs. For each of the three methods,
we cross-validate on the training data over all possible hyperparameters and report the best perfor-
mance. We observe that the dynamic pooling layer is very powerful because it captures the global
structure of the similarity matrix which in turn captures the syntactic and semantic similarities of the
two sentences. With the help of this powerful dynamic pooling layer and good initial word vectors
even the standard RAE and recursive averaging perform well on this dataset with an accuracy of
75.5% and 75.9% respectively. We obtain the best accuracy of 76.8% with the unfolding RAE with-
out hidden layers. We tried adding 1 and 2 hidden encoding and decoding layers but performance
only decreased by 0.2% and training became slower.

Next, we compare the dynamic pooling to simpler feature extraction methods. Our comparison
shows that the dynamic pooling architecture is important for achieving high accuracy. For every
setting we again exhaustively cross-validate on the training data and report the best performance.
The settings and their accuracies are:

(i) S-Hist: 73.0%. A histogram of values in the matrix S. The low performance shows that our
dynamic pooling layer better captures the global similarity information than aggregate statistics.
(ii) Only Feat: 73.2%. Only the three features described above. This shows that simple binary string
and number matching can detect many of the simple paraphrases but fails to detect complex cases.
(iii) Only Spoolea: 72.6%. Without the three features mentioned above. This shows that some infor-
mation still gets lost in Speoreq and that a better treatment of numbers is needed. In order to better
recover exact string matches it may be necessary to explore overlapping pooling regions.

(iv) Top Unfolding RAE Node: 74.2%. Instead of Spooled, Use Euclidean distance between the two
top sentence vectors. The performance shows that while the unfolding RAE is by itself very power-
ful, the dynamic pooling layer is needed to extract all information from its trees.

Table 3 shows our results compared to previous approaches (see next section). Our unfolding RAE
and dynamic similarity pooling architecture achieves state-of-the-art performance without hand-
designed semantic taxonomies and features such as WordNet. Note that the effective range of the
accuracy lies between 66% (most frequent class baseline) and 83% (interannotator agreement).

In Table 4 we show several examples of correctly classified paraphrase candidate pairs together
with their similarity matrix after dynamic min-pooling. The first and last pair are simple cases of
paraphrase and not paraphrase. The second example shows a pooled similarity matrix when large
chunks are swapped in both sentences. Our model is very robust to such transformations and gives
a high probability to this pair. Even more complex examples such as the third with very few direct
string matches (few blue squares) are correctly classified. The second to last example is highly
interesting. Even though there is a clear diagonal with good string matches, the gap in the center
shows that the first sentence contains much extra information. This is also captured by our model.

5 Related Work

The field of paraphrase detection has progressed immensely in recent years. Early approaches were
based purely on lexical matching techniques [22, 23, 19, 24]. Since these methods are often based on
exact string matches of n-grams, they fail to detect similar meaning that is conveyed by synonymous
words. Several approaches [17, 18] overcome this problem by using Wordnet- and corpus-based
semantic similarity measures. In their approach they choose for each open-class word the single
most similar word in the other sentence. Fernando and Stevenson [20] improved upon this idea
by computing a similarity matrix that captures all pair-wise similarities of single words in the two
sentences. They then threshold the elements of the resulting similarity matrix and compute the mean



L | Pr Sentences Sim.Mat.

P | 0.95] (1) LLEYTON Hewitt yesterday traded his tennis racquet for his first sporting passion - "-.l‘:.
Australian football - as the world champion relaxed before his Wimbledon title defence 4
(2) LLEYTON Hewitt yesterday traded his tennis racquet for his first sporting passion- | pog
Australian rules football-as the world champion relaxed ahead of his Wimbledon defence
P | 0.82] (1) The lies and deceptions from Saddam have been well documented over 12 years = "-|_I_
(2) It has been well documented over 12 years of lies and deception from Saddam .

P | 0.67| (1) Pollack said the plaintiffs failed to show that Merrill and Blodget directly caused their
losses

(2) Basically, the plaintiffs did not show that omissions in Merrill’s research caused the
claimed losses

N | 0.49| (1) Prof Sally Baldwin, 63, from York, fell into a cavity which opened up when the struc-
ture collapsed at Tiburtina station, Italian railway officials said

(2) Sally Baldwin, from York, was killed instantly when a walkway collapsed and she fell
into the machinery at Tiburtina station

N | 0.44] (1) Bremer, 61, is a onetime assistant to former Secretaries of State William P. Rogers and
Henry Kissinger and was ambassador-at-large for counterterrorism from 1986 to 1989
(2) Bremer, 61, is a former assistant to former Secretaries of State William P. Rogers and
Henry Kissinger

N | 0.11] (1) The initial report was made to Modesto Police December 28

(2) It stems from a Modesto police report

Table 4: Examples of sentence pairs with: ground truth labels L (P - Paraphrase, N - Not Paraphrase),
the probabilities our model assigns to them (Pr (S, S2) > 0.5 is assigned the label Paraphrase) and
their similarity matrices after dynamic min-pooling. Simple paraphrase pairs have clear diagonal
structure due to perfect word matches with Euclidean distance 0 (dark blue). That structure is
preserved by our min-pooling layer. Best viewed in color. See text for details.

of the remaining entries. There are two shortcomings of such methods: They ignore (i) the syntactic
structure of the sentences (by comparing only single words) and (ii) the global structure of such a
similarity matrix (by computing only the mean).

Instead of comparing only single words [21] adds features from dependency parses. Most recently,
Das and Smith [15] adopted the idea that paraphrases have related syntactic structure. Their quasi-
synchronous grammar formalism incorporates a variety of features from WordNet, a named entity
recognizer, a part-of-speech tagger, and the dependency labels from the aligned trees. In order to
obtain high performance they combine their parsing-based model with a logistic regression model
that uses 18 hand-designed surface features.

We merge these word-based models and syntactic models in one joint framework: Our matrix con-
sists of phrase similarities and instead of just taking the mean of the similarities we can capture the
global layout of the matrix via our min-pooling layer.

The idea of applying an autoencoder in a recursive setting was introduced by Pollack [9] and ex-
tended recently by [10]. Pollack’s recursive auto-associative memories are similar to ours in that
they are a connectionist, feedforward model. One of the major shortcomings of previous applica-
tions of recursive autoencoders to natural language sentences was their binary word representation
as discussed in Sec. 2.1. Recently, Bottou discussed related ideas of recursive autoencoders [25]
and recursive image and text understanding but without experimental results. Larochelle [26] inves-
tigated autoencoders with an unfolded “deep objective”. Supervised recursive neural networks have
been used for parsing images and natural language sentences by Socher et al. [27, 28]. Lastly, [12]
introduced the standard recursive autoencoder as mentioned in Sect. 2.2.

6 Conclusion

We introduced an unsupervised feature learning algorithm based on unfolding, recursive autoen-
coders. The RAE captures syntactic and semantic information as shown qualitatively with nearest
neighbor embeddings and quantitatively on a paraphrase detection task. Our RAE phrase features
allow us to compare both single word vectors as well as phrases and complete syntactic trees. In
order to make use of the global comparison of variable length sentences in a similarity matrix we
introduce a new dynamic pooling architecture that produces a fixed-sized representation. We show
that this pooled representation captures enough information about the sentence pair to determine the
paraphrase relationship on the MSRP dataset with a higher accuracy than any previously published
results.
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