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ABSTRACT

We show a number of improvements in the use of Hidden
Conditional Random Fields (HCRFs) for phone classification
on the TIMIT and Switchboard corpora. We first show that
the use of regularization effectively prevents overfitting, im-
proving over other methods such as early stopping. We then
show that HCRFs are able to make use of non-independent
features in phone classification, at least with small numbers
of mixture components, while HMMs degrade due to their
strong independence assumptions. Finally, we successfully
apply Maximum a Posteriori adaptation to HCRFs, decreas-
ing the phone classification error rate in the Switchboard cor-
pus by around 1% – 5% given only small amounts of adapta-
tion data.

Index Terms— Hidden Conditional Random Fields, Speech
Recognition, Phone Classification, Maximum a Posteriori

1. INTRODUCTION

While Hidden Markov Models (HMMs) have proved to be
a very successful paradigm for acoustic modeling, they suf-
fer from strong independence assumptions and usually don’t
work very well with non-independent features. Maximum
Likelihood Estimation (MLE) training for HMMs achieves
the underlying distributions only if the model assumptions are
correct and there is an infinite amount of training data [1].
Since these assumptions are not generally true, researchers
have switched to discriminative training methods.

Conditional Random Fields (CRFs) [2] are another widely-
used sequence labeling model that are attractive as a potential
replacement for HMMs. CRFs don’t have strong indepen-
dence assumptions and have the ability to incorporate a rich
set of overlapping and non-independent features. In addition,
CRFs are trained discriminatively by maximizing the condi-
tional probability of the label given the observations.

Recently, there has been increasing interest in CRFs with
hidden variables, i.e. Hidden Conditional Random Fields
(HCRFs). Like CRFs, HCRFs are undirected sequence mod-
els that incorporate a rich set of features and intrinsic discrim-
inative training, and have proved successful in tasks like string

edit distance (McCallum et. al. [3]) and gesture recognition
(Quattoni et. al. [4]).

In this paper, we explore a number of extensions to HCRF
models for phone classification. Phone classification is one
of the simplest tasks in speech recognition, in which we are
given a presegmented sequence of observations which must
be assigned a single phone label. Gunawardana et. al. [5]
have previously shown that HCRFs outperform both genera-
tively and discriminatively trained HMMs on this task.

In our first study we examine the effect of regularization
on HCRF learning to see if it improves learning. We next ex-
plore the use of multiple overlapping features. We augment
the standard 39 MFCC features with a number of new fea-
tures and show how HMMs and HCRFs are differently able
to make use of this added information. Finally, we look at
the important problem of adaptation. Adaptation techniques
like MLLR and MAP have proved extremely useful in HMM
systems for ASR. We explore whether MAP adaptation tech-
niques can be applied to HCRF phone classification to make
use of a small amount of adaptation data that comes from the
same source as the testing data.

We present the detail on HCRFs in section 2 and 3. The
application of HCRFs to phone classification is introduced in
section 4. We report our main three studies as follows; apply-
ing regularization to remove overfitting (section 5), adding
non-independent features (section 6), and MAP adaptation
(section 7).

2. HIDDEN CONDITIONAL RANDOM FIELDS

An HCRF is a markov random field conditioned on desig-
nated evidence variables in which some of the variables are
unobserved during training. The kind of linear chain struc-
tured HCRF that we use for speech recognition is simply a
conditional distribution p(y|X) with a sequential structure,
as figure 1 shows. Assume that we are given a sequence of
observations X and we want to give a corresponding label y;
HCRFs model the conditional distribution as



y

ht-1 ht ht+1

xt-1 xt xt+1

Label: phone

Hidden variables: 
subphones

Observations 

h0

x0

hT

xT

Fig. 1: Hidden Conditional Random Fields
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where H is the sequence of hidden variables, fk is the kth

feature which is a function of the label y, the hidden variable
sequence H , and the input observation sequence X . λk is the
corresponding parameter for each feature. The constant Z is
called the partition function and is defined as
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which is used to make sure the conditional distribution summed
over all possible labels be one. Due to having to sum over all
possible instances of y and H , the partition function is the
main source of computation in learning.

The major difference between HCRFs and CRFs is the in-
troduction in HCRFs of some hidden variables corresponding
to hidden structure. For speech, these hidden variables cor-
respond to subphones (the states in an HMM model). Since
we do not observe these hidden variables directly from input
data, we need to marginalize over them in both learning and
inference. This makes the training and inference of HCRFs
more compute-intensive than traditional CRFs. Introducing
hidden variables also makes the log-conditional likelihood
non-concave, causing us to face problems with local maxima
in training. Therefore, finding a good initialization becomes
an important issue for learning in HCRFs.

3. LEARNING AND INFERENCE

When learning HCRFs, we want to maximize the conditional
probability of the label y given the observation sequence X .
To simplify calculation, we maximize the log-conditional dis-
tribution instead of equation (1) directly. The objective func-
tion for optimization becomes
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The last term is used to represent Gaussian prior knowl-
edge for regularization. Regularization has been shown to
be useful at reducing overfitting in learning in CRFs [6].

The learning problem is formulated as an unconstrained
optimization problem. As the optimization technique for train-
ing, we use Stochastic Gradient Descent (SGD), which has
been shown to outperform quasi Newton methods such as
Limited-memory BFGS for training HCRFs [5]. In each pass,
we randomly draw one utterance from the training set with re-
placement and calculate the gradient based on that utterance.
The parameters are then updated in the direction of the gradi-
ent with step size η as shown in equation (4).

λ
(n+1)
k = λ

(n)
k + η(n) ∂ log p(y(n)|X(n); λ(n))

∂λ
(n)
k

(4)

The step size η is gradually decreased as the pass number
increases by equation (5); τ is used to determine how fast the
step size decreases:

η(n) =
τ

τ + n
(5)

The corresponding gradient with respect to λk can be de-
rived as follows
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= EH|y,X [fk(y, H, X)] − Ey′,H|X [fk(y′, H, X)] − λk

σ2
(7)

When a local maximum is reached, the gradient equals
zero. As equation (7) shows, if we do not include a regular-
ization term, the expectation of features by the distribution of
hidden variables given the label and observation variables is
equal to the expectation of features by the distribution of hid-
den and label variables given observation variables. Sutton
and McCallum [6] have given the corresponding derivation
for CRF training. In CRFs, the empirical count of the fea-
tures is equal to the expectation of features given the model
distribution when the maximum is achieved. We can get the
same result if we remove the hidden variables, H from equa-
tion (7). The gradient can be computed efficiently via the
forward-backward algorithm.

Because SGD only considers one sample or a small num-
ber of samples in calculating the gradient, the gradient calcu-
lation becomes much faster than Limited-memory BFGS [7].
Instead of updating the parameters via a very accurate gra-
dient, SGD updates the parameters several times during the
same time period using a roughly estimated gradient. Hence
SGD works better than other batch training methods when the



calculation of gradient is highly time-consuming, as it is for
HCRFs, which need to marginalize over all possible hidden
variables.

However, due to the small number of samples used in each
pass, the results are very unstable in general. Smoothing has
been shown to be useful for increasing the convergence rate
and stabilizing SGD [8]. The way we do smoothing is as
follows:

λ̂(n) =

Pn
i=1 γiλ(i)Pn

i=1 γi
(8)

where γ is a decay parameter used to determine how impor-
tant the past parameters are in smoothing. We choose γ to be
slightly less than one and λ̂(n) is the final model we use for
testing.

4. PHONE CLASSIFICATION

We apply HCRFs to the phone classification task, in which we
are given a sequence of acoustic observations and must assign
a single phone label. The hidden variables we use are the state
variables S, used to model subphones (akin to HMM states),
and component variables M , used to model the feature space
structure in each subphone.

The feature functions we apply are the same as those of
Gunawardana et. al. [5]. These include phone unigram fea-
tures f

(LM)
y′ , state transition features f

(Tr)
y′ss′ , component oc-

currence features f
(Occ)
s,m , first moment features f

(M1)
s,m , and

second moment features f
(M2)
s,m as follow,

f
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where δ(·) is an indicator function. The conditional log-
likelihood is not concave, which means we have local maxima
problem in learning. In order to find better local maxima, we
need to have a good initializations to start the learning pro-
cedure. We do this by training an HMM with one Gaussian
component by MLE. Then we transform the parameters of the
HMM to the corresponding parameters of the HCRF via:

λ
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where uy′ is the unigram probability, ay′ss′ is the transition
probability from state s to s′ for phone y′, and µs,m,d and
σ2

s,m,d are the mean and variance of the dth dimension of ob-
servation vector of the mth Gaussian in the sth state, respec-
tively.

We then do the training for HCRFs with one component.
As the training finishes, we clone by splitting the compo-
nent of each HCRF state into two different components, and
adding a small value to λ

(M1)
s,m,d for one, and subtracting it from

the other. We use this as the initialization for HCRFs with two
components and do the training again. We continue this pro-
cedure until the number of components of HCRFs reaches the
number of components we want. Our experiments showed
that this method gives us a better initialization than simply
starting with parameters from an HMM already trained with
the same number of Gaussians, especially for HCRFs with
large numbers of components and features.

4.1. Task, Corpus, and Methodology

Our first two studies on HCRF phone classification use the
TIMIT acoustic-phonetic continuous speech corpus [9]. Our
experimental setup follows [10]. We map the 61 TIMIT phones
into 48 phones for model training. The phone set is further
collapsed from 48 phones to 39 phones for evaluation, repli-
cating the method of Lee and Hon [11].

The training set in TIMIT contains 462 speakers and 4620
utterances in total. We use the core test set defined in TIMIT
as our main test set (24 speakers and 192 utterances). The
remaining 144 speakers (1152 utterances) in the test set are
used as a development set for tuning parameters and choosing
models.

We extract the standard 12 MFCC features and log energy
with their delta and double delta to form 39 dimensional fea-
tures. The window size and hopping time are 25ms and 10ms,
respectively. Hamming window is applied with pre-emphasis
coefficient 0.97. The number of filterbank channels is 40 and
the number of cepstral filters is 12.

5. STUDY 1: REGULARIZATION

Earlier research suggests that CRFs are subject to overfitting,
a problem that has been addressed by adding Gaussian prior



 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 0  10  20  30  40  50  60

P
h
o
n
e
 E

rr
o
r 

R
a
te

 (
%

)

Iterations

w/ reg
w/o reg

Fig. 2: Comparison between learning with and without regulariza-
tion (in eight component HCRFs).

knowledge as a regularization term [6]. We found this same
overfitting problem in our application of HCRFs to phone
classification. We therefore applied the same regularization
technique into HCRF learning as are shown in Equation (3).

Figure 2 shows the testing results of HCRFs learning with
regularization and without regularization. As the number of
iterations increases, the unregularized systems overfits the train-
ing corpus. Because of smoothing and the gradual decrease
in step size in SGD, the final error rate converges and doesn’t
overfit too terribly. Generally speaking, it is possible to avoid
overfitting by tuning the decrease in step size, but it is ex-
tremely difficult to tune perfectly without overfitting.

On the other hand, learning HCRFs with regularization
can remove overfitting effectively and is not affected by over-
decrease in the step size. As Figure 2 shows, we also converge
to a better final results. Finally, regularization makes it is pos-
sible to choose the models without a development set.

6. STUDY 2: ADDING NON-INDEPENDENT
FEATURES

One of the well-known drawbacks for HMMs is that they have
very strong independence assumptions among labels and ob-
servation. Given the current state, the current features are in-
dependent of the previous and next features. This assump-
tion is not generally true in speech. Traditionally, the speech
signal is analyzed by a short time Fourier Transform, which
extracts the features from a short speech segment. Features
are generally calculated in an overlapping window between
adjacent features, which shows clearly that they are not inde-
pendent.

However, HCRFs model the conditional probability di-
rectly, which do not explicitly represent the dependencies among
the observation variables. Therefore, HCRFs have the poten-
tial to add a rich set of features without our caring about the
dependency issues between them. In our second study, we
incorporate richer features into HCRFs and and HMMs and
compare their performance on TIMIT phone classification.

Comps MFCC PLP M+P M+long
mix01 36.91% 37.08% 37.74% 38.20%
mix02 34.90% 34.76% 35.34% 36.15%
mix04 32.83% 32.46% 33.33% 33.46%
mix08 30.59% 30.20% 31.00% 31.67%
mix16 29.41% 29.08% 29.80% 30.16%

Table 1: Phone error rate for adding non-independent features into
MLE-trained HMMs.

Comps MFCC PLP M+P M+long
mix01 24.05% 24.05% 22.59% 23.41%
mix02 22.90% 22.37% 22.01% 22.25%
mix04 22.19% 22.12% 21.79% 21.91%
mix08 21.75% 21.66% 21.69% 21.75%
mix16 21.84% 21.46% 21.82% 22.12%

Table 2: Phone error rate for adding non-independent features into
HCRFs.

6.1. Methods

We added two classes of features. First we combined PLP
and MFCC features. In addition to the 39 MFCC features de-
scribed in the previous study, we also extract Perceptual Lin-
ear Prediction (PLP) features, known to be competitive with
MFCCs in speech recognition. We use the standard method
of extracting 13 PLPs with their delta and double delta for 39
dimensional features. We use the same window size, hopping
time and pre-emphasis coefficient as in MFCCs extraction.
The Linear Cepstral Coefficient order is 12. We train and test
the HCRFs with MFCCs and PLPs alone, respectively. Then,
we combine MFCCs and PLPs to form a sequence of 78 di-
mensional feature vectors as our input observation sequence.

We next extracted long-distance features. In addition to
the original MFCCs analyzed with a 25ms window, we cal-
culate longer-distance MFCCs by applying a longer window
length, 75ms, overlapping with the original 25ms window.
All the remaining parameters for MFCCs extraction are the
same as the one in short window MFCCs. We combine the
short and long-term MFCC features to form a 78 dimensional
feature vector.

6.2. Results of Study 2

Table 1 shows the results of adding overlapping and non-
independent features in HMMs. As the table shows, com-
bining MFCCs with PLPs actually degrades the phone error
rate by around 0.7% – 0.8%. Adding long window MFCCs
into original MFCCs results in even worse performance, in-
creasing phone error by 1% – 1.2%. This shows the incorrect
strong independence assumptions in HMMs.

On the other hand, at least for one, two, and four compo-
nents, we get obvious improvements for HCRFs by adding
non-independent features. In Table 2, we find combining



MFCCs and PLPs decreases the phone error rate for one,
two, and four components. For eight and sixteen component
HCRFs, the performance of the combined features degrades
slightly. We believe this degradation is caused by search prob-
lems; adding more features complicates the model space, with
the result that it is easy to get stuck in bad local maxima and
in general requiring more training data for learning. In cur-
rent work we are trying to find better initial points and other
optimization techniques to solve this problem.

The results on combining short and long windowed MFCCs
are very similar to those of the MFCC plus PLP experiments.

In summary, our best error rates (21.5%) are slightly bet-
ter (lower) than the comparable HCRF results (21.7%) of [5],
but just slightly worse (higher) than the current best published
results on this task (21.1%) obtained by Large Margin Gaus-
sian Mixture Models [12].

7. STUDY 3: MAP ADAPTATION

Acoustic models are very sensitive to specific speaker char-
acteristics, and adaptation to small amounts of speaker data
has been shown to significantly improve ASR performance
on that speaker. Maximum a Posteriori (MAP) adaptation is
a method that has been successfully applied to HMM speaker
adaptation in speech (Gauvain and Lee [13]) as well as to
other tasks like text capitalization [14]. In this study, we ask
whether MAP adaptation can be used as well in HCRFs for
speaker adaptation in phone classification. We trained univer-
sal HCRFs on data from various speakers, and adapted these
HCRFs to several utterances from individual test speakers.

7.1. Methods

To explore MAP adaptation for HCRF speaker adaptation we
reformulate equation (3) as

log p(y|X; λ) = log
X
H

exp
X

k

λkfk(y, H, X)

− log
X
y′

X
H

exp
X

k

λkfk(y′, H, X)

−
X

k

(λk − λko)
2

2σ2
(9)

Equation (3) and (9) differ only in the regularization term.
In general HCRF training, we use the origin as the center of
the Gaussian prior. In MAP adaptation, we replace the ori-
gin by the parameters of the universal model, i.e. λko. Be-
cause the universal models give us a good idea about what any
acoustic model should look like, the last term is used as our
general prior on models. The first and second terms are just
the conditional log-likelihood given the adaptation data. We
learn the new parameters by optimizing equation (9) which
simultaneously considers both the universal models and the
new information from the adaptation data.

Comps mix01 mix02 mix04 mix08
PER 57.56% 59.41% 61.15% 56.46 %

Comps mix16 mix32 mix64 mix128
PER 50.95% 43.32% 36.59% 32.94%

Table 3: Phone classification error rate on Switchboard.

HMMs HCRFs
Comps Original Adapted Original Adapted
mix01 88.79% 76.49% 56.42% 51.49%
mix02 79.63% 67.69% 58.18% 52.87%
mix04 73.43% 64.03% 60.67% 55.93%
mix08 65.63% 59.43% 55.39% 51.76%
mix16 57.69% 53.98% 50.00% 45.94%
mix32 48.21% 48.13% 42.09% 39.65%

Table 4: MAP adaptation with different number of components.

Equation (9) is maximized in the same way as the HCRF
training described in section 3. SGD is used as the optimiza-
tion technique and smoothing is also applied to increase the
convergence rate of learning.

7.2. Task and Corpus

For MAP adaptation, rather than the TIMIT corpus, we used
the part of the Switchboard corpus annotated at ICSI [15].
We used this corpus because we felt that it was important to
see how our HCRF phone classification techniques worked
on this more difficult corpus of human-human speech, and
because the Switchboard corpus includes speakers with suffi-
cient data for adaptation. The corpus, which contains phone
boundaries for one hour of Switchboard speech, contains 734
speakers and 1285 utterances. Two of the speakers, 2830A
and 2887B, have more than 100 utterances transcribed. We
choose the first 60 utterances from those two speakers as the
adaptation set and the rest of the utterances, 79 utterances for
speaker 2830A and 68 utterances for speaker 2887B, as the
test set. The remaining 734 speakers and 1018 utterances are
used for training the universal models.

The phone set for the Switchboard transcriptions was quite
large since phone labels included context informations. In or-
der to reduce the number of phones to a reasonable number
for training, we replace each triphone by its middle phone.
The total number of phones we use is 51, which is not exactly
the same as the phone set we use for TIMIT phone classifica-
tion.

7.3. Results of Study 3

As the Switchboard phone classification results in Table 3
show, the error rate decreases as the number of components
increase, although there is some fluctuation with small num-
ber of components. Interestingly, compared to the situation
with TIMIT, in Switchboard we still get obvious improve-
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Fig. 3: MAP adaptation results with different amounts of adaptation
data for speaker 2830A.

ments by using more than 32 components. We believe this
is due to the greater variation in conversational speech than
read speech.

We show the MAP speaker adaptation results for both
HMMs and HCRFs with 60 utterances as adaptation data in
Table 4. As the table shows, we got obvious improvements
for all number of components in HCRF adaptation, and the re-
sulting adapted HCRF models also perform significantly bet-
ter than adapted HMMs. Not surprisingly, the magnitude of
the improvement decreases as the number of components in-
creases, presumably since HCRFs with a larger number of
components have more parameters and hence need more data
for adaptation.

Figure 3 shows how the amount of adaptation data influ-
ences the phone error rates. The x-axis is the number of utter-
ances, ranging from no adaptation data (the original models)
to 60 utterances. The y-axis is the phone classification error
rate. As the figure shows, increasing the amount of adapta-
tion data results in better performance. Even with only 10
utterances, we still get some benefit from MAP speaker adap-
tation. The improvement is more obvious when the number
of components is small.

8. CONCLUSION

In this paper, we have replicated earlier work showing that
HCRFs work better than HMMs for phone classification in
read speech (TIMIT), and also, not previously shown, in con-
versational speech (Switchboard). Our work offers a num-
ber of augmentations to previous use of HCRFs for phone
classification like [5]. We show that regularization can be
used effectively to remove overfitting in HCRFs learning. We
show preliminary results in HCRFs with small numbers of
components suggesting that HCRFs have the potential to in-
corporate a large set of non-independent features; this result
still requires further work to confirm this potential with larger
numbers of components. Finally, we show that MAP adapta-
tion can be applied as one adaptation technique for HCRFs,
resulting in phone error rate reductions of 1% – 5% in con-

versational speech.
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