1

Sepandar D. Kamvar

Exploiting the Block Structure of the Web for Computing
PageRank

Taher H. Haveliwala

Christopher D. Magni Gene H. Golub

Stanford University
{sdkamvar,taherh,manning,golub}@cs.stanford.edu

Abstract

The web link graph has a nested block struc-
ture: the vast majority of hyperlinks link pages
on a host to other pages on the same host, and
many of those that do not link pages within the
same domain. We show how to exploit this struc-
ture to speed up the computation of PageRank by
a 3-stage algorithm whereby (1) the local Page-
Ranks of pages for each host are computed in-
dependently using the link structure of that host,
(2) these local PageRanks are then weighted by
the “importance” of the corresponding host, and
(3) the standard PageRank algorithm is then run
using as its starting vector the weighted aggre-
gate of the local PageRanks. Empirically, this al-
gorithm speeds up the computation of PageRank
by a factor of 2 in realistic scenarios. Further,
we develop a variant of this algorithm that effi-
ciently computes many different “personalized”
PageRanks, and a variant that efficiently recom-
putes PageRank after node updates.

Introduction

ing many PageRank vectors, intensifying the need for faster
methods for computing PageRank.

Previous approaches to accelerating the PageRank com-
putation exploit general sparse graph techniques. Arasu et
al. [1] use values from the current iteration as they become
available, rather than using only values from the previous
iteration. They also suggest that exploiting the “bow-tie”
structure of the web [3] would be useful in computing Page-
Rank. However, the method they suggest is not practical,
as ordering the web matrix according to this structure re-
quires depth-first search, which is prohibitively costly on
the web. More recently, Kamvar et al. [11] suggest using
successive intermediate iterates to extrapolate sugedssi
better estimates of the true PageRank values. However, the
speedups from the latter work are modest for the parameter
settings typically used for PageRahk.

This paper proposes exploiting the detailed typology of
the web graph. Analysis of the graph structure of the web
has concentrated on determining various properties of the
graph, such as degree distributions and connectivitysstati
tics, and on modeling the creation of the web graph [12, 2].
However, this research has not directly addressed how this
inherent structure can be effectively exploited to speed
up link analysis. Raghavan and Garcia-Molina [15] have

exploited the hostname (or more generally, url)-induced

:Qgersaprjr?elxiigrovtlgghnge%ri%r%cagzgl:s sveevrerfél!(bglr:(;ir:/structure of the web to efficiently represent the web graph.
y g grap P Y €xp ff1 this paper, we directly exploit this kind of structure to

One of the best known web-graph computations is Page: ,
Rank, an algorithm for determining the “importance” of achieve large speedups compared with previous algorithms

Web pages [14]. The core of the PageRank algorithm infor computing PageRank by

volves repeatedly iterating over the web graph structure un,
til a stable assignment of page-importance estimates is ob-
tained. As this computation can take several days on web
graphs of several billion nodes, the development of tech:
niques for reducing the computational costs of the algo-

rithm becomes necessary for two reasons. Firstly, speed-
ing up this computation is part of the general efficien-

cies needed for improving the freshness of a web index.
Secondly, recent approaches to personalized and topic-
sensitive PageRank schemes [8, 10, 16] require comput-

substantially improving locality of reference, thereby r
ducing disk i/o costs and memory access costs,

reducing the computational complexity (i.e., number of
FLOPS).

allowing for highly parallelizable computations requir-
ing little communication overhead,

allowing reuse of previous computations when updating
PageRank and when computing multiple “personalized”
PageRank vectors.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage. Copyright is held by the authors. Copyright (C) 2003.

1in particular, the speedup is modest for the typically citesnping
factor ofc = 0.85 (which gives a fast-mixing graph).

Term Example:cs.stanford.edu/research/ Domain Host

top level domain| edu Full Intra | 953Mlinks 83.9%| 899M links 79.1%
domain stanford.edu Inter | 183M links 16.1%| 237M links 20.9%
hostname cs DNR Intra | 578Mlinks 95.2%]| 568M links 93.6%
host cs.stanford.edu Inter 29M links 4.8% | 39M links 6.4%
path Iresearch/

Table 2: Hyperlink statistics on ARGEWEB for the full graph
(Full: 291M nodes, 1.137B links) and for the graph with dangling
nodes removeddNR: 64.7M nodes, 607M links).

Table 1. Example illustrating our terminology using the ptn
url http://cs.stanford.edu/research/.

; lowing simple experiment. We take all the hyperlinks in
2 Experimental Setup FuLL-LARGEWEB, and count how many of these links are
In the following sections, we investigate the structureheft “intra-host” links (links from a page to another page in the
web, introducing an algorithm for computing PageRank,same host) and how many are “inter-host” links (links from
and discuss the speedup this algorithm achieves on realista page to a page in a different host). Table 2 shows that
datasets. Our experimental setup is as follows. 79.1% of the links in this dataset are intra-host links, and
We used two datasets of different sizes for our experi20.9% are inter-host links. These intra-host connectivity
ments. The SANFORD/BERKELEY link graph was gener- statistics are not far from the earlier results of Bharat et
ated from a crawl of thatanford.edu andberkeley.edu do- al. [2]. We also investigate the number of links that are
mains created in December 2002 by the Stanford WebBasatra-domain links, and the number of links that are inter-
project. This link graph (after dangling node removal, dis-domain links. Notice in Table 2 that an even larger majority
cussed below) contains roughly 683,500 nodes, with 7.®f links are intra-domain links (83.9%).
million links, and requires 25MB of storage. We used These results make sense intuitively. Take as an ex-
STANFORD/BERKELEY while developing the algorithms, ample the domaircs.stanford.edu. Most of the links
to get a sense for their performance. For real-world perforin cs.stanford.edu are links around thecs.stanford.edu
mance measurements, we use tirGEWEB link graph, site (such ass.stanford.edu/admissions, Or cs.stanford.edu
generated from a crawl of the Web that had been createtlesearch). Furthermore, almost all non-navigational links
by the Stanford WebBase project in January 2001 [9]. Thare links to other Stanford hosts, suchwvasv.stanford.edu,
full version of this graph, termedUtL-LARGEWEB, con- library.stanford.edu, Or www-cs-students.stanford.edu.
tains roughly 290M nodes, just over a billion edges, and One might expect that there exists this structure even
requires 6GB of storage. Many of these nodes are danglingp lower levels of the web hierarchy. For example, one
nodes (pages with no outlinks), either because the pagemight expect that pages undet.stanford.edu/admissions/
genuinely have no outlinks, or because they are pages thate highly interconnected, and very loosely connected with
have been discovered but not crawled. In computing Paggpages in other sublevels, leading to a nested block struc-
Rank, these nodes are excluded from the web graph untilire. This type of nested block structure can be nat-
the final few iterations, so we also consider the version olurally exposed by sorting the link graph to construct a
LARGEWEB with dangling nodes removed, termed DNR- link matrix in the following way. We sort urls lex-
LARGEWEB, which contains roughly 70M nodes, with icographically, except that as the sort key, we reverse
over 600M edges, and requires 3.6GB of storage. The linkhe components of the domain. For instance, the sort
graphs are stored using an adjacency list representatiokey for the urlwww.stanford.edu/home/students/ would be
with pages represented as 4-byte integer identifiers. Osdu.stanford.www/home/students. The urls are then assigned
an AMD Athlon 1533MHz machine with a 6-way RAID- sequential identifiers when constructing the link matrix. A
5 disk volume and 3.5GB of main memory, each iterationlink matrix contains as iti, j)th entry a 1 if there is a link
of PageRank on the 70M page DNRxRGEWEB dataset fromi to j, and 0 otherwise. This has the desired property
takes roughly 7 minutes. Given that computing PageRankhat urls are grouped in turn by top level domain, domain,
generally requires up to 100 iterations, the need for fashostname, and finally path. The subgraph for pagesin
computational methods for larger graphs with billions of ford.edu appear as a sub-block of the full link matrix. In

nodes is clear. turn, the subgraph for pagesvmvw-db.stanford.edu appear
Our criteria for determining the convergence of the algo-as a nested sub-block.
rithms that follow uses th&; norm of the residual vector; We can then gain insight into the structure of the web

i.e.,||Az®) — #®)||;. We refer the reader to [11] for a dis- by using dotplots to visualize the link matrix. In a dotplot,
cussion of why thel; residual is an appropriate measure if there exists a link from pagéeto pagej then point(i, j)

for measuring convergence. is colored; otherwise, poir(t, j) is white. Since our full
datasets are too large to see individual pixels, we show sev-
3 Block Structure of the Web eral slices of the web in Figure 1. Notice three things:

. . - . .. 1. Thereis a definite block structure to the web.
The key terminology we use in the remaining discussion is

given by means of example in Table 1. 2. The individual blocks are much smaller than entire web.
To investigate the structure of the web, we run the fol-3. There are clear nested blocks corresponding to domains,

A SERE R
1 .
T T DR R Tt 3
] B el L
i TSR . 1 I
IR 1 Ee il
i e 3 Bl iad &

3‘!['& §o
- L e
ERIEHETT ST
. . . D 4 26 + .
0 2 4 6 8 10 12

3
nz = 744250 w10° nz = 7583376

(b) Stanford/Berkeley

200

250 iz

300

3sof - |

400 .

4501 .G T s DT ke et S

I " 0 100 200 300 400
nz = 1525653 xm‘ nz = 6375
c) Stanford-50 d) Stanford/Berkeley Host Graph
y p

Figure 1: A view of 4 different slices of the web: (a) the IBMrdain, (b) all of the hosts in the Stanford and Berkeley dom&(c) the
first 50 Stanford domains, alphabetically, and (d) the lgpaph of the Stanford and Berkeley domains.

hosts, and subdirectories within the path. the superblock on the lower right hand side is Haeke-

Figure 1(a) shows the dotplot for thiem.com domain. Iey'e(_ju domain. .
Notice that there are clear blocks, which correspond to Figure 1(c) shows a closeup of the first 50 hosts al-
different hosts withinibm.com; for example, the upper Phabetically within thestanford.edu domain. The major-
left block corresponds to thamaden.ibm.com hosts (the ity of this dotplot is composed of 3 hosts that are large:
hosts for IBM's Almaden Research Center). Notice thatacomp.stanford.edu, the academic computing site at Stan-
the pages at the very end of the p|0t (pageg 18544) ford, |r-] the _upper Ieﬂ hand Cornerimgm.stanfo_rd.edu,
are heavily inlinked (the vertical line at the lower right an online bioinformatics resource, in the middle, and
hand corner of the plot. These are the pages within théaily.stanford.edu, the web site for theStanford Daily
www.ibm.com host, and it is expected that they be heavily (Stanford’s student newspaper) in the lower right hand
inlinked. Also notice that there are 4 patterns that lookcorner. ~ There are many interesting structural motifs
like the upside-down letter “L”. These are sites that haveln this plot. First there is a long vertical line in
a shallow hierarchy; the root node links to most pages irfhe upper left-hand corner. This corresponds to the
the host (horizontal line), and is linked to by most pages inweb site http://acomp.stanford.edu; most pages in the
the host (vertical line), but there is not much interlinkageacomp.stanford.edu host point to this root node. Also, there
within the site itself (empty block). Finally, notice thaet i & clear nested block structure withitomp.stanford.edu
area around the diagona' is very dense; this Corresponds Qf] the level of different directories in the url h|erarchy.
strong intrablock linkage, especially in the smaller black In the Stanford Daily site, we see diagonal lines, long

Figure 1(b) shows the dotplot for TBNFORD/ vertical blocks, a main center block, and short thin blocks.
BERKELEY. Notice that this also has a strong block struc-The first several web pages dily.stanford.edu represent
ture and a dense diagonal. Furthermore, this plot makethe front page of the paper for the past several days. Each
clear the nested block structure of the web. The superblockont page links to the front page of the day before, and
on the upper left hand side is th&anford.edu domain, and therefore there is a small diagonal line in the upper left

hand corner of th&tanford Daily block. The diagonals are not very interconnected. However, when we remove

are due to the url naming convention of tBanford Daily ~ the hosts that have only 1 page (Figure 3(b)), this spike is

which causes the lexicographic ordering of urls to induce asubstantially dampened, and when we exclude hosts with

chronological ordering of the articles. The front pagek lin fewer than 5 pages, the spike is eliminated. This shows

to articles, which are the middle pages of the block. Therethat the hosts in ARGEWEB that are not highly intracon-

fore, we see a horizontal strip in the top middle. Thesenected are very small in size. When the very small hosts

articles also link back to the front pages, and so we see are removed, the great majority of hosts have high intra-

vertical strip on the middle left hand side. The article&lin host densities, and very few hosts suffer from the GeoCities

to each other, since each article links to related artiales a effect.

articles by the same author. This accounts for the square

block in the center. The long vertical strips representpages BlockRank Algorithm

that are on the standard menu on each page of the site (some

pages on this menu are the “subscriptions” page, the “writd&Ve now present the BlockRank algorithm that exploits the

a letter to the editor” page, and the “advertising” page). Fi empirical findings of the previous section to speed up the

nally, the diagonal lines that surround the middle block arecomputation of PageRank. This work is motivated by and

pages such as “e-mail this article to a friend” or “commentbuilds on aggregation/disaggregation techniques [5, 17]

on this article”, that are linked to only one article each. and domain decomposition techniques [6] in numerical lin-
Figure 1(d) shows the host graph for thanford.eduand ear algebra. Steps 2 and 3 of the BlockRank algorithm are

berkeley.edu domains, in which each host is treated as a sinsimilar to the Rayleigh-Ritz refinement technique [13]. We

gle node, and an edge is placed betweenhast hosgj if ~ begin with a review of PageRank in Section 4.1.

there is a link between any page in hbahd hosjj. Again,

we see strong block structure on the domain level, and tha. 1 Preliminaries

dense diagonal shows strong block structure on the host .)) o

level as well. The vertical and horizontal lines near the bot !N this section we summarize the definition of PageRank

tom right hand edge of both the Stanford and Berkeley do;14] and review some of_the mathematlcgl tool_s we WI||.USG

mains represent theww.stanford.edu andwww.berkeley.edu N analyzmg and improving the standard iterative alganith

hosts, showing that these hosts are, as expected, strondff computing PageRank.

linked to most other hosts within their own domain. Underlying the definition of PageRank is the following
basic assumption. A link from a pagee Web to a page
3.1 Block Sizes v € Web can be viewed as evidence thats an “impor-

tant” page. In particular, the amount of importance con-
We investigate here the sizes of the hosts in the web. Figferred onv by v is proportional to the importance afand
ure 2(a) shows the distribution over number of (crawled)inversely proportional to the number of pagepoints to.
pages of the hosts inARGEWEB. Notice that the major- Since the importance of is itself not known, determining
ity of sites are small, on the order tf° pages. Figure 2(b) the importance for every pagec Web requires an iterative
shows the sizes of the host blocks in the web when danglin§ixed-point computation.
nodes are removed. When dangling nodes are removed, the To allow for a more rigorous analysis of the necessary
blocks become smaller, and the distribution is still skewedcomputation, we next describe an equivalent formulation
towards small blocks. The largest block had 6,000 pagesn terms of a random walk on the directed Web gr&ph
In future sections we see how to exploit the small sizes of.et « — v denote the existence of an edge franto v
the blocks, relative to the dataset as a whole, to speedup up G. Letdeg(u) be the outdegree of pagein G. Con-

link analysis. sider a random surfer visiting pageat timek. In the next
time step, the surfer chooses a negérom amongu’s out-
3.2 The GeoCities Effect neighborgv|u — v} uniformly at random. In other words,

)) o attimek + 1, the surfer lands at nodg € {v|u — v} with
While one would expect that most domains have high intraprobability 1/ deg(u).
cluster link density, as ims.stanford.edu, there are some The PageRank of a pages defined as the probabil-
domains that one would expect to have low intraclusterity that at some particular time stdp> K, the surfer is
link density, for examplepages.yahoo.com (formerly o hagei. For sufficiently largek, and with minor mod-
www.geocities.com). The \'/veb Sitehttp://pages.yahoo.com IS fications to the random walk, this probability is unique,
the root page for Yahoo! GeoCities, a free web hosting seryystrated as follows. Consider the Markov chain induced

vice. There is no reason to think that people who have wel%y the random walk or?, where the states are given by
sites on GeoCities would prefer to link to one another rathethe nodes inG. and the,stochastic transition matrix de-

than sites not in GeoCiti€sFigure 3 shows a histogram of scribing the transition from to j is given by P with
the intradomain densities of the web. In Figure 3(a) there ispij = 1/ deg(i).

a spike near 0% intrahost linkage, showing that many hosts "=, p o be a valid transition probability matrix, ev-

2There may of course be deeper path-level structure, althaegdo ~ €TY N0de must have at |ea_3t_1 outgoing tranSitic_)n; €q., _
not yet exploit this directly. should have no rows consisting of all zeros. This holds if

o — " . L
o 3 5 6

(a8) FULL-LARGEWEB

o 05 25 3

(b) DNR-LARGEWEB

35

Figure 2: Histogram of distribution over host sizes of thddwEhez-axis gives bucket sizes for the lggof the size of the host-blocks,

and they-axis gives the fraction of host-blocks that are that size.

(a) All hosts

L
-20 0 20 40 60 80 100 120 -20 20 40 60

(b) Hosts with 1 page excluded

80 100 120 -20 20 40 60 80 100 120

(c) Hosts with pages excluded

Figure 3: Distribution over interconnectivity of host bkscfor the DNR-LARGEWEB data set. Ther-axis of each figure shows
percentile buckets for intra-host linkage density (thepat of edges originating or terminating in a given host #ratintra-host links),
and they-axis shows the fraction of hosts that have that linkageitieriSgure 3(a) shows the distribution of intra-host ligkedensity
for all hosts; 3(b) shows it for all hosts that have more thgrade; and 3(c) shows it for all hosts that have 5 or more pages.

G does not have any pages with outdegbegvhich does
not hold for the Web graph.P can be converted into a

By the Ergodic Theorem for Markov chains [7], the
Markov chain defined by’ has a unique stationary proba-

valid transition matrix by adding a complete set of outgo-bility distribution if P’ is aperiodic and irreducible; the for-

ing transitions to pages with outdegi@eln other words,
we can define the new matriR’ where all states have at
least one outgoing transition in the following way. kebe
the number of nodes (pages) in the Web graph. d_ée

mer holds for the Markov chain induced by the Web graph.
The latter holds ifi7 is strongly connected, which is gener-
ally not the case for the Web graph. In the context of com-
puting PageRank, the standard way of ensuring this prop-

the n-dimensional column vector representing a uniformerty is to add a new set of complete outgoing transitions,

probability distribution over all nodes:

R 1
v = [E]HXI

(1)

Let d be then-dimensional column vector identifying the
nodes with outdegre@

o {1 if deg(i) = 0,
10 otherwise
Then we construcP’ as follows:
D=d-&"
P'=P+D
In terms of the random walk, the effect 6f is to modify

with small transition probabilities, tall nodes, creating a
complete (and thus strongly connected) transition graph. |
matrix notation, we construct the irreducible Markov ma-
trix P as follows:

E = [1px x 77

P'"=cP'+(1-¢)E

In terms of the random walk, the effect &fis as follows.

At each time step, with probabilitfl — ¢), a surfer visit-
ing any node will jump to a random Web page (rather than
following an outlink). The destination of the random jump
is chosen according to the probability distribution given i
¢. Artificial jumps taken because & are referred to as
teleportation. In [14], the value ot was taken to be 0.85,

the transition probabilities so that a surfer visiting a-dan and we use this value in all experiments in this work.

gling page (i.e., a page with no outlinks) randomly jumps

By redefining the vectof given in Equation 1 to be

to another page in the next time step, using the distributiomonuniform, so thaD and E add artificial transitions with

given byd.

nonuniform probabilities, the resultant PageRank vector

§=cP"Z, Rank computation. This is the basic idea behind the Block-
w = [|Z]|1 — ||#]]1; Rank algorithm, which we summarize here and describe in
¥ =9+ w, this section. The algorithm proceeds as follows:

Algorithm 1: Computingf = A% 0. Split the web into blocks by domain.

1. Compute the Local PageRanks for each block (Sec-
functionpageRanK G, #(®, %) { tion 4.3).
Construct? from G: P;; = 1/ deg(j); 2. Estimate the relative importance, or “BlockRank” of

repeat
FEH1) = oPTF):
w = [|Z0)]]y — [|#*D]];
FHD) = kD) L
§ = [|g*HY) — 2*[|y;

each block (Section 4.4).

3. Weightthe Local PageRanks in each block by the Block-
Rank of that block, and aggregate the weighted Local
PageRanks to form an approximate Global PageRank
vectorz (Section 4.5).

until 6 <e;
return Z(k+1): 4. UseZ as a starting vector for standard PageRank (Sec-
} tion 4.6).

We describe the steps in detail below, and we introduce
some notation here. We will use lower case indices {i.e.

. N . /) to represent indices of individual web sites, and upper
can be biased to prefer certain kln_ds of pages. For this re%ase indices (i.el, J) to represent indices of blocks. We
son, we refer ta/ as thepersonalization vector. '

For simplicit q ot it ori K th use the shorthand notatiore I to denote pagéee block!.

.O(; S|m]!ot;10|)é.an cqn5|s_ﬁrLcy_W|t prlorfv;/r(])r t’ € " The number of elements in block is denotedn ;. The
mainder of the ,,'STCU.SS'cm Wil be In terms ot the ransp_os%raph of a given block is given by then; x ny submatrix
matrix, A = (P")"; i.e., the transition probability distri- G of :

. L) o 7 of the matrixG.
bution for a surfer at nodgeis given by row:; of P”, and
columng of A.

Note that the edges artificially introduced Byand E)] _)
never need to be explicitly materialized, so this construcin this section, we describe computing a “local PageRank
tion has no impact on efﬁciency or the sparsity of the ma-vector for eac_h block in the web. Since most blocks have
trices used in the computations. In particular, the matrix-very few links in and out of the block as compared to the
vector multiplicationj = A# can be implemented effi- nhumber of links within the block, it seems plausible that
ciently using Algorithm 1. the relative rankings of most of the pages within a block

Assuming that the probability distribution over the are determined by the inter-block links.
surfer’s location at timé is given byz(®), the probability We define theocal PageRank vector I; of a block J
distribution for the surfer’s location at timieis given by (G ss) to be the result of the PageRank algorithm applied
2k = Ak#0) The unique stationary distribution of the only on blockJ, as if blockJ represented the entire web,
Markov chain is defined a$my_,, z(*), which is equiv- and as if the links to pages in other blocks did not exist.
alent tolimy_,. A¥z(®), and is independent of the initial ~ Thatis:
distributionZ©). This is simply the principal eigenvector
of the matrix4 = (P")T, which is exactly the PageRank
vector we would like to compute. where the start vectdt; is then; x 1 uniform probability
The standard PageRank algorithm computes the princivector over pages in block ([nl—J]nxl), and the personal-
pal eigenvector by starting with the uniform distribution jzation vectors; is then; x 1 vector whose elements are
#% = § and computing successive iterat8§+!) = g|| zero except the element corresponding to the root node
AZ®) until convergence (i.e., it uses tipewer method). of block J, whose value is 1.
This algorithm is summarized in Algorithm 2. While many
algorithms have been developed for fast eigenvector cond.3.1 Local PageRank accuracies
putations, many of them are unsuitable for this problem be-
cause of the size and sparsity of the Web matrix (see [11
for discussion).

Algorithm 2: PageRank

4.3 Computing Local PageRanks

I; = pageRank(G 1.7, 81, 7)

o investigate how well these local PageRank vectors ap-
roximate the relative magnitudes of the true PageRank
vectors within a given host, we run the following exper-
iment. We compute the local PageRank vectbyrsof

each host in 8ANFORD/BERKELEY. We also compute the
The block structure of the web suggests a fast algorithm foglobal PageRank vectaf for STANFORD/BERKELEY us-
computing PageRank, wherein a “local PageRank vectoring the standard PageRank algorithm whose personaliza-
is computed for each host, giving the relative importance otion vectord is a uniform distribution over root nodes. We
pages within a host. These local PageRank vectors can thehen compare the local PageRank scores of the pages within
be used to form an approximation to the global PageRank given host to the global PageRank scores of the pages in
vector that is used as a starting vector for the standard-Pagthe same host.

4.2 Overview of BlockRank Algorithm

Approximation Error Measure Average Value Web Page Local Global

- http://aa.stanford.edu 0.2196 0.4137

ly ||lJ — §J||1 0.2383 http://aa.stanford.edu/aeroastro/AAfolks.html 0.0910 0.0730

. =, http://aa.stanford.edu/aeroastro/AssistantsAero.html 0.0105 0.0048

KDist (lJ7 gJ) 0.0571 http://aa.stanford.edu/aeroastro/EngineerAero.html 0.0081 0.0044
http://aa.stanford.edu/aeroastro/Faculty.html 0.0459 0.0491

vy ||17'J — §J| |1 1.2804 http://aa.stanford.edu/aeroastro/FellowsAero. html 0.0081 0.0044
KDi o 0.8369 http://aa.stanford.edu/aeroastro/GraduateGuide.html 0.1244 0.0875

ist (UJJ gJ) . http://aa.stanford.edu/aeroastro/Labs.html 0.0387 0.0454
http://aa.stanford.edu/aeroastro/Links.html 0.0926 0.0749

. “ ” http://aa.stanford.edu/aeroastro/MSAero.html 0.0081 0.0044

Table 3: The closenesg as measured by average (a) ab%MUte http://aa.stanford.edu/aeroastro/News.html 0.0939 0.0744
ror, and (b) Kendall'sF distance of the local PageRank vecttrs nttp://aa.stanford.edu/aeroastro/PhdAero.html 0.0081 0.0044
and the global pageRank segmajjiscompared to the closeness http://aa.stanford.edu/aeroastro/aacourseinfo.html 0.0111 0.0039
. http://aa.stanford.edu/aeroastro/aafaculty.html 0.0524 0.0275

between uniform vectorg; to the gIObal PageRank Segmeﬁbs http://aa.stanford.edu/aeroastro/aalabs.html 0.0524 0.0278
for the STANFORD/BERKELEY dataset. http://aa.stanford.edu/aeroastro/admitinfo.html 0.0110 0.0057
http://aa.stanford.edu/aeroastro/courseinfo.html 0.0812 0.0713

4 H ttp://aa.stanford.edu/aeroastro/draftcourses.html 0.0012 0.0003
Spe.CIflca”y’ we take the elements Correspondlng to thﬁttp://aa.stanfordedu/aeroastro/labs.html 0.0081 0.0044
pages in hosf of the gIobaI PageRank vectsr and form http://aa.stanford.edu/aeroastro/prospective.html 0.0100 0.0063
— H http://aa.stanford.edu/aeroastro/resources.html 0.0112 0.0058

the VeCtOFgJ from these elements. We normalljge SO http://aa.stanford.edu/aeroastro/visitday.html 0.0123 0.0068

that its elements sum to 1 in order to compare it to the lo-

cal PageRank vectdy, which also has a.; norm of 1. Table 4: The local PageRank vectd; for the domain

Specifically, aa.stanford.edu (left) compared to the global PageRank segment
. . . gs corresponding to the same pages. The local PageRank vector
g1 =2 € J)/|Z(G €)| has a similar ordering to the normalized components of tbiead|

. PageRank vector. The discrepancy in actual ranks is ladyedy
We call these vectorg, normalized global PageRank seg- to the fact that the local PageRank vector does not give dnoug

ments, or simplyglobal Page_Rank_segments for short. weight to the root nodettp://aa.stanford.edu.

The results are summarized in Table 3. The absolute er-
ror ||y — gs||1 is on average 0.2383 for the hosts ila&i- we only compare lists containing the same sets of elements,
FORD/BERKELEY. . sothatKDist is identical to Kendall's- distance.

We compare the error of the local PageRank vedtprs The average distancd&Dist(l;, gy) is 0.0571 for the
to the error of a unifornt’; = [%]nm vector for each hosts in SANFORD/BERKELEY. Notice that this is low.
hostJ. The erroi||7; — g,||1 is on average 1.2804 for the This means that the ordering induced by the local Page-
hosts in SANFORD/BERKELEY. One can see that the local Rank is close to being correct, and thus suggests that the
PageRank vectors are much closer to the global PageRamkajority of the L; error in the comparison of local and
segments than the uniform vectors are. So an aggregati@lobal PageRanks comes from the miscalibration of a few
of the local PageRank vectors may form a better start vecpages on each host. Indeed the miscalibration may be
tor for the standard PageRank iteration than the uniforr@mong important pages; as we discuss next, this miscali-
vector. bration is corrected by the final step of our algorithm. Fur-

The relative ordering of pagesthin a host induced by thermore, the relative rankings of pagegiifferent hosts is
local PageRank scores is generally close to the intra-hostnkown at this point. For these reasons, we do not suggest
ordering induced by the global PageRank scores. To conising local PageRank for ranking pages; we use it only as
pare the orderings, we measure the average Kendall's-a tool for computing theglobal PageRank more efficiently.
distance betwen the local PageRank vecigrand global ~ Table 4 confirms this for the host stanford.edu. No-
PageRank segmen@y. The KDist distance measure, tice that the ordering is preserved, and a large part of the
based on Kendall's-rank correlation and used for com- discrepancy is due ttp://aa.stanford.edu. The local Page-
paring induced rank orders, is defined as follows: R_ank computation gives too little weight to the root node.

Consider two partially ordered lists of URLs, andr,, ~ Since the elements of the local vector sum to 1, the ranks

each of lengthn. Let U be the union of the URLs iy Of all of the other pages are upweighted.

andr,. If &; is U — 71, then letr! be the extension of It should be noted that errors of this pattern (where the
71, wherer{ containsé; appearing after all the URLs in majority of L, error comes from the miscalibration of a
1.2 We extendr, analogously to yield,. KDist is then ~ few pages) are fixed easily, since once these miscalibrated

defined as: pages are fixed (by, for example, a few iterations of global
PageRank), the rest of the pages fall into place. Errors that
KDist(ry,72) = are more random take longer to fix. We observe this empir-
|{(u,v) : 7/, 7} disagree on order s, v), u # v}| ically_, but QO not include these experiments here for space
(UN(U=1) considerations.

This suggests a stopping criteria for local PageRank
In other wordsKDist(7;, 72) is the probability that; and computations. At each stage in a local PageRank com-
74 disagree on the relative ordering of a randomly selecteghutation, one could compute the Kendalfsesidual (the
pair of distinct nodegu,v) € U x U. In the currentwork, Kendall's distance between the current iteratigf! and

3The URLSs ind are placed with theame ordinal rank at the end of. the previous iteratioﬁJ(k_l)). When the Kendall’s= resid-

0% ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ the block graph B, where each vertex in the graph corre-
sponds to a block in the web graph. An edge between two
pages in the web is represented as an edge between the cor-
responding blocks (or a self-edge, if both pages are in the
same block). The edge weights are determined as follows:
the weight of an edge between blodkand/J is defined to
be the sum of the edge-weights from paged ito pages
in J in the web graph, weighted by the local PageRanks of
the linking pages in block.

That is, if A is the web graph and is the local Page-
Rank of pagé in block I, then weight of edg®; s is given

by:

2 4 6 8 10 12 14 16 18 20
Biy= Y Aij-l
Figure 4: Local PageRank convergence rates for hosts in DNR- iel,jed

LARGEWEB. The z-axis is the number of iterations until con- \ye can write this in matrix notation as follows. Define the
vergence to a tolerance 0~ ", and they-axis is the fraction of local PageRank matriZ, to be then x k matrix whose

hosts that converge in a given number of iterations. -
columns are the local PageRank vectgrs

03

ual is 0, that means the ordering is correct, and the local l_{ 0 9
PageRank computation can be stopped. I— 0 b 0
4.3.2 Local PageRank Convergence Rates G 0 T

Another interesting question to investigate is how quickly pefine the matrixS to be then x k matrix that has the same

the local PageRank scores converge. In Figure 4, we showtrycture ag., but whose nonzero entries are all replaced
a histogram of the number of iterations it takes for the Io-|Oy 1. The block matrixB is therefore thé: x k matrix:

cal PageRank scores for each hostin DNRRGEWEB to
converge to ar; residualk 10~!. Notice that most hosts B=LTAS

converge to this residual in less than 12 iterations.
9) . . Notice thatB is a transition matrix where the elemdBi} ;
Interestingly, there is no correlation between the con-

vergence rate of a host and the host’s size. Rather, the Corr}@pre_s?nts the transition probability of bloZko block.J.
R hat is:

vergence rate is primarily dependent on the extent of the

nested block structure within the host. That is, hosts with Bry = p(J|I)

strong nested blocks are likely to converge slowly, since -)

they represent slow-mixing Markov chains. Hosts with a Once we have thie x k transition matrixB, we may use

more random connection pattern converge faster, since thdfe standard PageRank algorithm on this reduced matrix to

represent a fast-mixing Markov chain. compute the BlockRank vectér That is:

This suggests that one could make the local PageRank - L.
computations even faster by wisely choosing the blocks. b = pageRank(B, di,)
That is, if a host has a strong nested block structure, US@hered is the uniformk-vector[%]kxl.
the directories within that host as your blocks. However, Note that this is the same as computing the stationary
this is not a crucial issue, becaus_e we show in Section _%istribution of the transition matrix- B+ (1 —c) Ej,, where
that the local PageRank computations can be performed ify defineB; = [1]xx: x 4.7 The analogy to the random

a distributed fashion in parallel with the crawl. Therefore surfer model of [14] is this: we imagine a random surfer

re . . L.
. . oing from block to block according to the transition prob-
not a bottleneck for computing PageRank with ourschemeS g ng ton p

. e) ability matrix B. At each stage, the surfer will get bored
as the local computations can be pipelined with the cfawl. with probability1 — ¢ and jump to a differerlock

4.4 Estimating the Relative Importance of Each Block 4.5 Approximating Global PageRank using Local

In this section, we describe computing the relative impor- PageRank and BlockRank

tance, orBlockRank, of each block. Assume there ake Inthis section, we describe finding an estimate to the global
blocks in the web. To compute BlockRanks, we first createPageRank vectof. At this point, we have two sets of
rankings. Within each blocl, we have the local Page-
4Generally this requires a site-based crawler (such as thsBdfe

crawler [4]) which maintains a pool of active hosts, and dsalosts to Ranksl; of the Qages in the block. We also have the
completion before adding new hosts to the pool. BlockRank vectob whose elements; are the BlockRank

for each blockJ, measuring the relative importance of the global computations. The full rank vectors do fit in
blocks. We may now approximate the global PageRank of = main memory; however, using the sorted link struc-

a pagej € J as its local PageRank, weighted by the ture® dramatically improves the memory access pat-
BlockRankb ; of the block in which it resides. That is, terns to the rank vector. Indeed, if we use the sorted
0) link structure, designed for BlockRank, as the input

z;” =1lj-by instead to thestandard PageRank algorithm, the en-
In matrix notation, this is: hanced locality of reference to the rank vectors cuts
o . the time needed for each iteration of the standard al-

= Lb gorithm by over 1/2: from 6.5 minutes to 3.1 minutes

Recall that the local PageRanks of each block sum to 1. for each iteration on DNR-ARGEWES!

Also, the BlockRanks sum to 1. Therefore, our approxi-pqyantage 2 In our BlockRank algorithm, the local Page-
mate global PageRanks will also sum to 1. The reasoning Rank vectors for many blocks will converge quickly:
follows: The sum of of our approximate global PageRanks thus the computations of those blocks may be termi-

sum(z;) =) ; x; can be written as a sum over blocks nated after only a few iterations. This increases the ef-
fectiveness of the local PageRank computation by al-

sum(z;) = ZJ Z]-EJ T lowing it to expend more computation on slowly con-
verging blocks, and less computation on faster con-
verging blocks. Note for instance in Figure 4 that there

sum(z.) = Libs — b l is a wide range of rates of convergence for the blocks.
() ZJ ZJ'EJ e ZJ szeJ g In the standard PageRank algorithm, iterations operate

Since the local PageRanks for each domain sum to 1 onthewhole graph; thus the convergence bottleneck s

Using our definition foes; from Equation 4.5

(EjeJ I; =1) largely due to the slowest blocks. Much computation
is wasted recomputing the PageRank of blocks whose
sum(z;) = ZJ by local computation has already converged.
And since the BlockRanks also sum toX ¢ b; = 1) Advantage 3 The local PageRank computations in Step 1
of the BlockRank algorithm can be computed in a
sum(z;) =1 completely parallel or distributed fashion. That is, the

local PageRanks for each block can be computed on a

Therefore, we may use our approximate global PageRank _
separate processor, or computer. The only communi-

vectorZ(®) as a start vector for the standard PageRank al-

gorithm. cation required is that, at the end of Step 1, each com-
puter should send their local PageRank vetdp a
4.6 Using This Estimate as a Start Vector central computer that will compute the global Page-

Rank vector. If our graph consists aftotal pages,
the net communication cost consists&f bytes (if
using 8-byte double precision floating point values).
Naive parallelization of the computation that does not

In order to compute the true global PageRank vegfoom
our approximate PageRank vec#?), we simply use it as
a start vector for standard PageRank. That is:

= pageRank(G, f(o)’ﬁ) exploit block structure Would_ re_quire a transfer8af
_ . _ bytesafter each iteration, a significant penalty. Fur-
whereG is the graph of the web, and is the uniform thermore, the local PageRank computations can be
distribution over root nodes. In Section 7, we show how pipelined with the web crawl. That is, the local Page-
to compute different personalizations quickly org€éhas Rank computation for a host can begin as a separate

been computed. The BlockRank algorithm for computing process as soon as the crawler finishes crawling the
PageRank, presented in the preceding sections, is summa- host. In this case, only the costs of Steps 2—4 of the
rized by Algorithm 3, given in the appendix. BlockRank algorithm become rate-limiting.

5 Advantages of BlockRank Advantage 4 In several scenarios, the local PageRank
computations (e.g., the results of Step 1) can be
reused during future applications of the BlockRank
algorithm. Consider for instance news sites such as

The BlockRank algorithm has four major advantages over
the standard PageRank algorithm.

Advantage 1 A major speedup of our algorithm comes cnn.com that are cr_awled more frequently then the
from caching effects. All of the host-blocks in our general web. In this case, after a crawlonh.com,
crawl are small enough so that each block graph fits ~ If We wish to recompute the global PageRank vector,
in main memory, and the vector of ranks for the ac- we can rerun the B_IockRank algorithm, except that in
tive block largely fits in the CPU cache. As the full Step 1 of our algorithm, only the local PageRanks for
graph does not fit entirely in main memory, the local the cnn.com block need to be recomputed. The re-

PageRank iterations thus require less disk i/o then the ~ Maining local PageRanks will be unchanged, and can

5As in Section 3, this entails assigning document ids in egiaphic
order of the url (with the components of the full hostnamesrsed).

Step | Wallclock time Algorithm Wallclock time
1 17m11s Standard 180m 365
2 7m 40s Standard (using url-sorted links) 87m 44s
3 Om 4s BlockRank (no pipelining) 81m 195
4 56m 24s BlockRank (w/ pipelining) 57m 063
Total 81m 19s

Table 6: Wallclock running times for 4 algorithms for comipat
Table 5: Running times for the individual steps of BlockRémk PageRank witlk = 0.85 to a residual of less that0 2.
¢ = 0.85 in achieving a final residual ot 1072.
PageRank BlockRank

be reused in Steps 2—3. In this way, we can also reuseSTANFORD/BERKELEY 50 27

the local PageRank computations for the case of com- L ARGEWEB 28 18

puting several “personalized” PageRank vectors. We

further discuss personalized PageRank in Section 7Table 7: Number of iterations needed to converge for stahdar

and graph updates in Section 8. PageRank and for BlockRank (to a tolerancd @f * for STAN-
FORD/BERKELEY, and10~2 for LARGEWEB).

6 Experimental Results Rank vectors can be pipelined with the web crawl, or they
In this section, we investigate the speedup of BlockRankcan be computed in parallel after the crawl. If the local
compared to the standard algorithm for computing PagePageRank vectors are computed as soon as possible (e.g.,
Rank. The speedup of our algorithm for typical scenariosas soon as a host has been fully crawled), the majority of
comes from the first three advantages listed in Section 9ocal PageRank vectors will have been computed by the
The speedups are due to less expensive iterations, as wéilne the crawl is finished. Similarly, if the local Page-
as fewer total iterations. (Advantage 4 is discussed in subRank vectors are computed after the crawl, but in a dis-
sequent sections) tributed manner, using multiple processors (or machines)
We begin with the scenario in which PageRank is com-to independently compute the PageRank vectors, the time
puted after the completion of the crawl; we assume onlyit takes to compute the local PageRanks will be low com-
that Step 0 of the BlockRank algorithm is computed con-pared to the standard PageRank computation. Thus, only
currently with the crawl. As mentioned in Advantage 1 the running time of Steps 2—4 of BlockRank will be rele-
from the previous section, simply the improved referencevant in computing net speedup. The contructionBofs
locality due to blockiness, exposed by lexicographicallythe dominant cost of Step 2, but this too can be pipelined;
sorting the link matrix, achieves a speedup of a factor of 2Step 3 has negligible cost. Thus the speedup of Block-
in the time needed for each iteration of the standard PagdRank in this scenario is determined by the increased rate
Rank algorithm. This speedup is completely independentf convergence in Step 4 that comes from using the Block-
of the value chosen far, and does not affect the rate of Rank approximatioa®) as the start vector. We now take
convergence as measured in number of iterations requireal closer look at the relative rates of convergence. In Fig-
to reach a particulak, residual. ure 5(a), we show the convergence rate of standard Page-
If instead of the standard PageRank algorithm, we us&ank, compared to the convergence of Step 4 of Block-
the BlockRank algorithm on the block structured matrix, Rank on the $ANFORD/BERKELEY dataset for a random
we gain the full benefit of Advantages 1 and 2; the blocksump probabilityl — ¢ = 0.15 (i.e.,c = 0.85). Note that to
each fit in main memory, and many blocks converge morechieve convergence to a residual 0f 4, using the Block-
quickly than the convergence of the entire web. We com-Rank start vector leads to a speedup of a factor of 2 on the
pare the wallclock time it takes to compute PageRank usSTANFORD/BERKELEY dataset. The RRGEWEB dataset
ing the BlockRank algorithm in this scenario, where localyielded an increase in convergence rate of 1.55. These re-
PageRank vectors are computed serially after the crawl isults are summarized in Table 7. Combined with the first
complete, with the wallclock time it takes to compute Page-effect described above (from the sorted link structure), in
Rank using the standard algorithm given in [14]. Table 5this scenario, our algorithm yields a net speedup of over 3.
gives the running times of the 4 steps of the BlockRank(For higher values o¢, as explored in [11], the speedup
algorithm on the IARGEWEB dataset. The first 3 rows of is even more significant; for example we got a 10 times
Table 6 give the wallclock running times for standard Pagespeedup on the I@NFORD/BERKELEY dataset when we
Rank, standard PageRank using the url-sorted link matrixsetc = 0.99.)
and the full BlockRank algorithm computed afterthe crawl. These results are the most significant speedup results to
We see there is a small additional speedup for BlockRanklate for computing PageRank, and the only results show-
on top of the previously described speedup. Subsequentling significant speedup for = 0.85 on large datasets.
we will describe a scenario in which the costs of StepsAlso, it should be noted that the BlockRank algorithm can
1-3 become largely irrelevant, leading to further effextiv be used in conjunction with other methods of accelerating
speedups. PageRank, such as Quadratic Extrapolation [11], or Gauss-
In this next scenario, we assume that the cost of Step $Seidel [6, 1] (or both). These methods would simply be
can be made negligible in one of two ways: the local Pageapplied to Step 4 in the BlockRank algorithm. When used

2 ‘ ‘ ized BlockRank algorithm is simply the last 3 steps of the
—— Standard PageRank . .
of — BlockRank] generic BlockRank algorithm.
NN 7.1 Inducing Random Jump Probabilities Over Pages
b]
S The Personalized BlockRank algorithm requires that the
! Ss | random surfer not have the option of jumping to a specific
-8f S 1 page when he bores (he may only jump to the host). How-
_10} R : ever, the last step in the BlockRank algorithm requires a
ol s | random jump probability distributiodl over pages. Thus,
T~ we need to induce the probabilip(j) that the random
147 0 % P 20 = surfer will jump to a pageg if we know the probability

p(J) that he will jump to host/ in which pagej resides.

Figure 5: Convergence rates for standard PageRank (so#i li We induce this as follows:
vs. BlockRank (dotted line). The-axis is the number of itera- N . 2
tions, and they-axis is the log of thel;-residual. SANFORD/ p(5) = p(T)p(i|7) @)

BERKELEY data setr = 0.85. That is, the probability that the random surfer jumps to
agej is the probability that he will jump to host, times

%e probability of being at pagegiven that he is in hosl.
Since the local PageRank vecthy is the stationary

probability distribution of pages within host, p(j|J) is

. given by the element df; corresponding to page There-

7 Personalized PageRank fore, the elementk ; ; of the matrixZ correspondtd;; =

In [14], it was originally suggested that, by changing theP(i|J). Also, by definition, the elementay), = p(J).

random jump vector to be nonuniform, the resultant Ihereiore, in matrix notation, Equation 2 can be written as

PageRank vector can be biased to prefer certain kind% = L.

of pages. For example, a random surfer interested in _

sports may get bored every once in a while and jump/-2 Using “Better” Local PageRanks

FO http://WWW.espn.00m, Wh||e a Itandom surfer interested If we have a|ready Computed the generic PageRank vec-
in current events may instead jump Hop://www.cnn.com tor 7 we have even “better” local PageRank vectors than
when bored. While personalized PageRank is a compelling,e began with. That is, we can normalize segmentg of
idea, in general it requires computing a large number oo form the normalized global PageRank segmehtsis
PageRank vectors. described in Section 4. These scores are of course better
We use the BlockRank algorithm and a simple restric-estimates of the relative magnitudes of pages within the
tion on the jump behavior of the random surfer to dramat,ock than the local PageRank vectdks since they are
ically reduce the computation time of personalized Pagegerived from the generic PageRank vector for the full web.
Rank. The restriction is this: instead of being able 1054 we can modify Personalized BlockRank as follows. Let
choose a distribution ovepages to which he jumps when s define the matri# similarly as we we defined, except
he’s bored, the random_surfer may chobests. For_exam- using the normalized global PageRank segmgntsather
ple, the random surfer interested in sports may jump to th‘fhan the local PageRank vectdgs Again, we only need
wwi.espn.com NS, but he may not, for example, jump to to computeH once. We define the matrib’BH to be simi-

http://WWW.espn.com/ncb/columns/forde_pgt/index.html. _ We lar to the matrixB as defined in Equation 4.4, but usify
can then encode the personalization vector in ke instead ofl: '

dimensional vectot, (wherek is the number of host-

blocks in the web) that is a distribution over different fsost By =HTAS (3)
With this restriction, the local PageRank vectbywill

not change for different personalizations. In fact, sirme t 7.3 Experiments

local PageRank vectots do not change for different per- \we test this algorithm by computing the Personalized
sonalizations, neither does the block maix PageRank of a random surfer who is a graduate student
Only the BlockRank vectob will change for different jn jinguistics at Stanford. When he bores, he has an
personalizations. Therefore, we only need to recomputgos probability of jumping to the linguistics hostww-
the BlockRank vectal for each block-personalization vec- linguistics.stanford.edu, and a 20% probability of jumping
tor . to the main Stanford hogtww.stanford.edu. Figure 6 shows
The personalized PageRank computation could proceetthat the speedup of computing the Personalized PageRank
as follows. Assuming you have already computed a generitor this surfer shows comparable speedup benefits to stan-
PageRank vector once using the BlockRank algorithm, andard BlockRank. However, the main benefit is that the lo-
have stored the block-transition matrR, the personal- cal PageRank vectors do not need to be computed at all

in conjunction with these methods, one should expect eve
faster convergence for BlockRank; these hybrid approache
are left for future study.

2 T T -
—— Personalized BlockRank
oF — - Personalized PageRank |4
\

2P\ s
—4r R
_6, = ~ N

-8r N
—10}
—12}
_14

0 10 20 30 40 50

Figure 6: Convergence of Personalized PageRank compaatio

using standard PageRank and Personalized BlockRank.

for Personalized BlockRank. The matiikis formed from

the already computed generic PageRank vector. Therefore,
the overhead to computing Personalized PageRank vector§4]

using the Personalized BlockRank algorithm is minimal.

8 Node Updates

Collaboration between NTT Communication Science Lab-
oratories, Nippon Telegraph and Telephone Corporation
and CSLI, Stanford University (research project on Con-
cept Bases for Lexical Acquisition and Intelligently Rea-
soning with Meaning).

References

[1] A. Arasu, J. Novak, A. Tomkins, and J. Tomlin. PageRank
computation and the structure of the web: Experiments and
algorithms. InProceedings of the Eleventh International
World Wide Web Conference, Poster Track, 2002.

[2] K. Bharat, B.-W. Chang, M. Henzinger, and M. Ruhl. Who
links to whom: Mining linkage between web sites. In
Proceedings of the IEEE International Conference on Data
Mining, November 2001.

[3] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Ra-

jagopalan, R. Stata, A. Tomkins, and J. Wiener. Graph struc-

ture in the web. IrProceedings of the Ninth International

World Wide Web Conference, 2000.

J. Cho and H. Garcia-Molina. Parallel crawlers Firoceed-

ings of the Eleventh International World Wde Web Confer-

ence, 2002.

[5] P.-J. Courtois. Queueing and Computer System Applica-
tions. Academic Press, 1977.

We can also utilize the strategy of reusing Local PageRank[e] G. H. Golub and C. F. V. LoanMatrix Computations. The
vectors when we wish to recompute PageRank after several ~ Johns Hopkins University Press, Baltimore, 1996.
pages have been added or removed from the web. Sincg7] G. Grimmettand D. StirzakeProbability and Random Pro-
the web is highly dynamic, with web pages being added cesses. Oxford University Press, 1989.

or removed all the time, this is an important problem to [8] T.H.Haveliwala. Topic-sensitive PageRank Aroceedings
address. In particular, we wish to crawl certain hosts, such of the Eleventh International World Wide Wweb Conference,

as daily news providers such ash.com more frequently
than others.
If we use BlockRank to compute the PageRank vegtor

and store the local PageRank vectrsthen we only need

to recompute the local PageRanks of those hosts to whic

pages have been added or removed at each update.

9 Conclusion

2002.

9] J. Hirai, S. Raghavan, H. Garcia-Molina, and A. Paepcke.
Webbase: A repository of web pages.Rroceedings of the
Ninth International World Wide Web Conference, 2000.

HO] G. Jeh and J. Widom. Scaling personalized web search. In
Proceedings of the Twelfth International World Wide Web
Conference, 2003.

[11] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H.
Golub. Extrapolation methods for accelerating PageRank
computations. IrProceedings of the Twelfth International

We have shown that the hyperlink graph of the web has World Wde Web Conference, 2003.

a nested block structure, something that has not yet bedm?2] J.Kleinberg, S. R. Kumar, P. Raghavan, S. Rajagopatah,
thoroughly investigated in studies of the web. We exploit ~ A. Tomkins. The web as a graph: Measurements, models,
this structure to compute PageRank in a fast manner us- ~and methods. IfProceedings of the International Confer-

ing an algorithm we call BlockRank. We show empirically
that BlockRank speeds up PageRank computations by fadl3l
tors of 2 and higher, depending on the particular scenario.
There are a number of areas for future work: finding the
“best” blocks for BlockRank by splitting up what would
be slow-mixing blocks with internal nested block structure

ence on Combinatorics and Computing, 1999.

D. McAllister, G. Stewart, and W. Stewart. On a rayleigh

refinement technique for nearly uncoupled stochastic matri

ces.Linear Algebra and Its Applications, 60:1-25, 1984.

[14] L. Page, S. Brin, R. Motwani, and T. Winograd. The Page-
Rank citation ranking: Bringing order to the weBanford
Digital Libraries Working Paper, 1998.

using the block structure for hyperlink-based algorithmsj5) s "Raghavan and H. Garcia-Molina. Representing web
other than web search, such as in clustering or classifica- = graphs. IrProceedings of the IEEE Intl. Conference on Data

tion; and exploring more fully the topics of of updates and

personalized PageRank.

10 Acknowledgments

Engineering, March 2003.
[16] M. Richardson and P. DomingosThe Intelligent Surfer:
Probabilistic Combination of Link and Content Information
in PageRank, volume 14. MIT Press, Cambridge, MA, 2002.
[17] H. A. Simon and A. Ando. Aggregation of variables in dy-

This paper is based on work supported in part by the Na- ~ namic systemsEconometrica, 29:111-138, 1961.
tional Science Foundation under Grant No. 11S-0085896
and Grant No. CCR-9971010, and in part by the Research

Appendix

This appendix summarizes the BlockRank and Person
ized BlockRank algorithms presented in this paper. Th
standard BlockRank algorithm for computing PageRank i
summarized in Algorithm 8.

The Personalized BlockRank algorithm for computing

aElif'ferent personalizations of PageRank is summarized in
éAIgorithm 4. Assuming you have already computed a
Sqeneric PageRank vector once using the BlockRank algo-
rithm, and have computeH from the generic PageRank
vectorZ, and By as defined in Equation 3, the algorithm

0. Sort the web graph lexicographically as describedproceeds as follows:

in Section 3, exposing the nested block structure of the
web.

1. Compute the local PageRank vecigr for each
block J.

foregch block .JJ do
1y = pageRank(G ;s, 87, 707);
end

2. Compute block transition matri¥8 and Block-
Ranksb.

B=LTAS
b = pageRank(B, ¥, %)

3. Find an approximatioi®) to the global PageRank
vectorZ by weighting the local PageRanks of pages in
block J by the BlockRank of7.

720 = 1p

4. Use this approximation as a start vector for a standard
PageRank iteration.

#9 = pageRank(G, 7, 7)

Algorithm 3: BlockRank Algorithm

6In the newest iteration of the WebBase system, the sitecharsevier
stores pages from different hosts in different files, mal8tep 0 practical.
Furthermore, the WebBase system currently maintains adstst of the
urls for efficiently encoding the url-lookup table. For teesasons, we do
not include the cost of Step 0 in future discussion unles$icithp stated.

For a given block-personalization vect@y,
1. Compute the personalized BlockRank veétor

—

b = pageRank(By,3,7)), where 3 is a uni-
form start vector.

2. Find an approximatio(®) to the global Page-
Rank vectorZ by weighting the local PageRanks of
pages in block/ by the personalized BlockRank dt

#0 = Hp

3. Induce the personalization vectdr over pages
from the personalization vector over hosjs

v = Huy,

4. Use this approximation as a start vector for a
standard PageRank iteration.

= pageRank(G, 79, 7)

Algorithm 4: Personalized BlockRank Algorithm

