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Abstract

We present a new family of models for unsu-
pervised parsingDependency and Boundary
models, that use cues at constituent bound-
aries to inform head-outward dependency tree
generation. We build on three intuitions that
are explicit in phrase-structure grammars but
only implicit in standard dependency formu-
lations: (i) Distributions of words that oc-
cur at sentence boundaries — such as English
determiners — resemble constituent edges.
(ii) Punctuation at sentence boundaries fur-
ther helps distinguish full sentences from
fragments like headlines and titles, allow-
ing us to model grammatical differences be-
tween complete and incomplete sentences.
(iii) Sentence-internal punctuation boundaries
help with longer-distance dependencies, since
punctuation correlates with constituent edges.
Our models induce state-of-the-art depen-
dency grammars for many languages without
special knowledge of optimal input sentence
lengths or biased, manually-tuned initializers.

Introduction

A~ TN
D‘T N‘N V]%Z I‘N D‘T N‘N
[The check] is in [the  mail]
N——— N——_——

Subject Object

Figure 1: A partial analysis of our running example.

Consider the example in Figure 1. Because the
determiner §T) appears at the left edge of the sen-
tence, it should be possible to learn that determiners
may generally be present at left edges of phrases.
This information could then be used to correctly
parse the sentence-internal determinethi@ mail
Similarly, the fact that the noun heakilN) of the ob-
jectthe mailappears at the right edge of the sentence
could help identify the nounheckas the right edge
of the subjectNP. As with jigsaw puzzles, working
inwards from boundaries helps determine sentence-
internal structures of both noun phrases, neither of
which would be quite so clear if viewed separately.

Furthermore, properties of noun-phrase edges are
partially shared with prepositional- and verb-phrase
units that contain these nouns. Because typical head-
driven grammars model valence separately for each
class of head, however, they cannot see that the left
fringe boundary,The check of the verb-phrase is

Natural language is ripe with all manner of boundshared with its daughter'sheck Neither of these
aries at the surface level that align with hierarchicahsights is available to traditional dependency for-
syntactic structure. From the significance of funcmulations, which could learn from the boundaries
tion words (Berant et al., 2006) and punctuatiorof this sentence only that determiners might have no
marks (Seginer, 2007; Ponvert et al., 2010) as sepiaft- and that nouns might have no right-dependents.
rators between constituents in longer sentences — toWe propose a family of dependency parsing mod-
the importance of isolated words in children’s earlhels that are capable of inducing longer-range im-
vocabulary acquisition (Brent and Siskind, 2001plications from sentence edges than just fertilities
— word boundaries play a crucial role in languagef their fringe words. Our ideas conveniently lend
learning. We will show that boundary informationthemselves to implementations that can reuse much
can also be useful in dependency grammar induof the standard grammar induction machinery, in-
tion models, which traditionally focus on head rathecluding efficient dynamic programming routines for
than fringe words (Carroll and Charniak, 1992).  the relevant expectation-maximization algorithms.



2 The Dependency and Boundary Models mented as both head-outward and head-inward au-

) tomata. (In fact, arbitrary permutations of siblings
Our models follow a standard generative story fof, 4 given side of their parent would not affect the

head-outward automata (Alshawi, 1996a), restricteg q|ihood of the modified tree, with the DMV.) We
to the split-head case (see beIo\n)v_er lexical word 55056 to make fuller use of split-head automata’s
classegc. }: first, a sentence roet is chosen, with  ea4.gutward nature by drawing on information in
probability Pumcs(c, | o3 L); < is a special start oo ig|ly-generated parses, which contain useful pre-
symbol that, by convention (Klein and Manning,gictors that, until now, had not been exploited even
2004; Eisner, 1996), produces exactly one child, iy teaturized systems for grammar induction (Cohen
its left. Next, the process recurses. Each (head} q Smith, 2009; Berg-Kirkpatrick et al., 2010).
word ¢, generates a left-dependent with probability g me of these predictors, including the identity
1 —Psoe( - | L; ---), Where dots represent additional or even number (McClosky, 2008) — of already-
param_ete_rlz_auon on which it may t_)e co_nd_|t|oned. IE]enerated siblings, can be prohibitively expensive in
the child is indeed generated, its identityis cho- sentences above a short lengthFor example, they
sen with probabilityPume(ca | e ), influenced poqy cerain modularity constraints imposed by the
by the identity of the parent, and possibly other pa- 1,45 yseq i (k3)-optimized algorithms (Paskin,
rameters (again represented by dots). The child th%ma; Eisner, 2000). However, in bottom-up pars-

generates its own subtree recursively and the WhOilﬁg and training from text, everything about the yield

process continues, moving away from the head, un-j o  {he ordered sequence of all already-generated

til e, fails to generate aleft-dependent. A_‘t that F_)Oimdescendants, on the side of the head that is in the
an analogous procedure is repeated,®right, this ., .es5 of spawning off an additional child — is not

time using stopping factofmw (- | &; ---). All parse only known but also readily accessible. Taking ad-

t_rees derived in this way are guar_anteed to be projeGéntage of this availability, we designed three new
tive and can be described by split-head grammars. . J4als for dependency grammar induction.
Instances of these split-head automata have been

heavily used in grammar induction (Paskin, 2001b2.1 Dependency and Boundary Model One

_Klein z:nd Manning, 2004 I:eadclilen ?t aI.f,f_Z_OOQDBM_l conditions all stopping decisions on adja-
inter alia), in part because they allow for e |C|entCenCy and the identity of the fringe word — the

implgm_entationg (Eisner_and_ Safta, _19%) of currently-farthest descendant (edge) derived by head
the inside-outside re-estimation algorithm (Baker,

1979). The basic tenet of split-head grammars ig In the given head-outward directiomi{ ¢ {z.7}):
that every head word generates its left-dependents
independently of its right-dependents. This asi the adjacent cased; = 1), ¢, is deciding whether
sumption implies, for instance, that words’ left-to have any children on a given side: a first child’s
and right-valences — their numbers of childrersubtree would be right next to the head, so the head
to each side — are also independent. But it doeand the fringe words coincide.(= c.). In the non-
not imply that descendants that are closer to thadjacent case.{j = r), these will be different words
head cannot influence the generation of fartheand their classes will, in general, not be the s@me.
dependents on the same side. Nevertheless, mahgus, non-adjacent stopping decisions will be made
popular grammars for unsupervised parsing behavedependently of a head word’s identity. Therefore,
as if a word had to generate all of its childrenall word classes will be equally likely to continue to
(to one side) — or at least their count before grow or not, for a specific proposed fringe boundary.
allowing any of these children themselves to recurse. For example, production dfhe check isnvolves

For example, Klein and Manning’s (2004) depeniwo non-adjacent stopping decisions on the left: one
dency model with valence (DMV) could be imple-by the nouncheckand one by the veris, both of

- which stop after generating a first child. In DBM-1,
IUnrestricted head-outward automata are strictly more pow-

erful (e.g., they recognize the languadg” in finite state) than 2Fringe words differ also from other standard dependency

the split-head variants, which process one side beforettier.o features (Eisner, 19962.3): parse siblings and adjacent words.

Psrop( - | dir; adj, ce).



N TN m quantity Revenue:$3.57 billion, the timel:11am

D\T N\N V]\SZ I‘N D‘T N‘N <‘> and the like — tend to be much shorter than com-

The check s in the  mail plete sentences. The new root-attachment factors
X could further track that incomplete sentences gener-

ally lack verbs, in contrast to other short sentences,

e.g., Excerpts follow; Are you kidding? Yes, he

P= (1 — PSTQP(O | L; T)) X PATTACH(VBZ | (o L)
X (1 — ]P)s'mp( . | L, T7 VBZ)) X PATTACH(NN | VBZ7 L)
( .

x (1 — Psop( - | R; T,VBZ)) X Parmcu(IN | VBZ; R) : Al _

x Psrop( - | L; F,DT) s7vez % Psrop( - | B; F,NN) o wez did., It's huge, Indeed it is, | said, ‘NOW?, “Ab-

X (1= Psrop( - | L; T,NN))> X Pirpyeq(DT | NN; L) solutely,” he said. | am waiting, Mrs. Yeargin de-
" ]%12_ ?ST;( T| };IN)T IN)) " ggTTAC(H(T’y iN]?)?)) _ clined, McGraw-Hill was outraged.“It happens?,

9 P:Ei( .| L; T: ) 8 PZE:( ] R; F:NN) ;; . 'm OK, Jack, Who cares?Never mindand so on.
X Pirop( - | L; T,DT) X Pérop( - | R; T,DT) All other attachment probabiliti€Bmcu(ca | cn; dir)

X Psrop(o | L F) X Psrop(o | R; T). remain unchanged, as in DBM-1. In practiceyp

1 1 can indicate presence of sentence-final punctuation.

Figure 2: Our running example — a simple sentence and
its unlabeled dependency parse structure’s probabitity, 2.3 Dependency and Boundary Model Three

factored by DBM-1; highlighted comments specify headgyg\1.3 adds further conditioning on punctuation
associated to non-adjacent stopping probability faCtorS'context. We introduce another boolean parameter

this outcome is captured by squaring a shared p&-°5s: which indicates the presence of intervening

rameter belonging to the left-fringe determifigre ~ Punctuation between a proposed head wgrdnd
Pes( - | L: F,DT)® — instead of by a product of two its dependent,. Using this information, longer-
factors, SUCh @Bswe( - | L; F,NN) - Psre( - | L; F,VBZ). distance punctuation-crossing arcs can be modeled

eparately from other, lower-level dependencies, via
In these grammars, dependents’ attachment pro%— P y P

abilities, given heads, are additionally conditioned Parracu(cq | cp; dir, cross).

only on their relative positions — as in traditional For instance, inContinentals believe thathe
models (Klein and Manning, 2004; Paskin, 2001b):strongest growth area wilbe southern Europgfour
words appear betweehat andwill. Conditioning

on (the absence of) intervening punctuation could
help tell true long-distance relations from impostors.

]PATTACH(Cd ’ cp; dir )
Figure 2 shows a completely factored example.

2.2 Dependency and Boundary Model Two All other probabilities Pswe( - | dir; adj, ce, comp) and

DBM-2 allows different but related grammars to coFema(er | 5 L, comp), remain the same as in DBM-2.

exist in a single model. Specifically, we presuppose 4 Summary of DBMs and Related Models

that all sentences are assigned to one of two cIass?_Fé ad-outward automata (Alshawi, 1996a; Alshawi

complete and incompleteofnp € {T,F}, for now ) .
taken as exogenous). This model assumes that Worlag%b' Alshawi et al., 2000) played a central part as

word (i.e., head-dependent) interactions in the twgeneratlve models for probabilistic grammars, start-

domains are the same. However, sentence Iengtwg with their early adoption in supervised split-head

— for which stoopina probabilities are responsibl constituent parsers (Collins, 1997; Collins, 2003).
pping p P eTable 1 lists some parameterizations that have since

— and distributions of root words may be different. . .
been used by unsupervised dependency grammar in-

Consequently, an additionabmp parameter is . ) .
added to the context of two relevant types of factorsc%Iucers sharing their backbone split-head process.

Psrop( - | dir; adj, ce, comp); 3 Experimental Set-Up and Methodology

andPyrracu(cr | ©; L, comp). We first motivate each model by analyzing the Walll
For example, the new stopping factors could capturtreet Journal (WSJ) portion of the Penn English
the fact that incomplete fragments — such as th&reebank (Marcus et al., 1993hefore delving into

noun—phraseé%eor_ge Mortom headlinefEnergyand SWe converted labeled constituents into unlabeled depen-
Odds and Endsa line itemc - Domestic cardollar dencies using deterministic “head-percolation” rules|i@s,



Split-Head Dependency Grammar Parrace  (head-root) | Parract (dependent-head) Psrop  (adjacent and not)
GB (Paskin, 2001b)[| 1 / [{w}] d | h; dir 1/2

DMV (Klein and Manning, 2004)(| ¢, | ¢; L cd | en; dir - | dir; adj, cp

EVG (Headden et al., 2009 ¢, | ©; L cd | en; dir, ady - | dir; adj, cp

DBM-1 (82.1) || e | o5 L cd | en; dir - | dir; adj, ce

DBM-2 (82.2) || ¢r | o; L, comp ca | en; dir - | dir; adj, ce, comp
DBM-3 (82.3) || ¢r | o L, comp ca | en; dir, cross - | dir; adj, ce, comp

Table 1: Parameterizations of the split-head-outward gdive process used by DBMs and in previous models.

grammar induction experiments. Although motivatall 19 languages, for the DMV baselines and DBM-1
ing solely from this treebank biases our discussioand 2. We did not test DBM-3 in this set-up because
towards a very specific genre of just one languagenost sentence-internal punctuation occurs in longer
it has the advantage of allowing us to make concretentences; instead, DBM-3 will be tested later (see
claims that are backed up by significant statistics. §7), using most sentencesn the final training step

In the grammar induction experiments that followof a curriculum strategy (Bengio et al., 2009) that we
we will test each model’'s incremental contributionwill propose for DBMs. For the three models tested
to accuracies empirically, across many disparate lagh shorter inputs (up to 15 tokens) both terminating
guages. We worked with all 23 (disjoint) train/testcriteria exhibited the same trend; lateen EM consis-
splits from the 2006/7 CoNLL shared tasks (Buchtently scored slightly higher than 40 EM iterations.
holz and Marsi, 2006; Nivre et al., 2007), span- o o ,
ning 19 language$. For each data set, we induced Term'rllag'gpegsr'?ga|| D'\g\s/_ | DBM;B{ DBMfo]
a baseline grammar using the DMV. We excluded eqyiy-stopping lateen E’\’H 3451) 390 40.9
all training sentences with more than 15 tokens to
create a conservative bias, because in this set-up thable 2: Directed dependency accuracies, averaged over
baseline is known to excel (Spitkovsky et al., 2009)@1" 2006/7 CoNLL evaluation sets (all sentences), for the
Grammar inducers were initialized using (the same™MV and two new dependency-and-boundary grammar

uniformly-at-random chosen parse trees of traininb ducers (DBM-1,2) — using two termination strategfes.

sentences (Cohen and Smith, 2010); thereafter, Ve o hongency and Boundary Model One
applied “add one” smoothing at every training step.
To fairly compare the models under consideralhe primary difference between DBM-1 and tradi-
tion — which could have quite different startingtional models, such as the DMV, is that DBM-1 con-
perplexities and ensuing consecutive relative likeditions non-adjacent stopping decisions on the iden-
lihoods — we experimented with two terminationtities of fringe words in partial yields (s€2.1).
strategies. In one case, we blindly ran each learner . L
through 40 steps of inside-outside re-estimation, ig‘l'1 Analytical Motivation
noring any convergence criteria; in the other casdreebank data suggests that the class of the fringe
we ran until numerical convergence of soft EM’s obword — its part-of-speech,. — is a better predic-
jective function or until the likelihood of resulting tor of (non-adjacent) stopping decisions, in a given
Viterbi parse trees suffered — an “early-stopping ladirectiondir, than the head’s own class. A statis-
teen EM” strategy (Spitkovsky et al., 2011.3). tical analysis of logistic regressions fitted to the data
We evaluated against all sentences of the blind teshows that thec,, dir) predictor explains only about
sets (except one 145-token item in Arabic 07 data)/% of the total variation (see Table 3). This seems
Table 2 shows experimental results, averaged ovWw, although itis much better compared to direction
alone (which explains less than 2%) and slightly bet-

1999), discarding any empty nodes, etc., as is standartiggac ter than using the (current) number of the head’s de-
“We did not test on WSJ data because such evaluatonwould

not be blind, as parse trees from the PTB are our motivating ex °Results for DBM-3 — given only standard input sentences,

amples; instead, performance on WSJ serves as a strong baggeto length fifteen — would be nearly identical to DBM-2’s.

line in a separate study (Spitkovsky et al., 2012a): baapging ®We down-weighed the four languages appearing in both

of DBMs from mostly incomplete inter-punctuation fragnent CoNLL years (see Table 8) by 50% in all reported averages.




Non-Adjacent Stop Predictol Rz AIC. % of All First , Last Sent., Frag.
(dir) || 0.0149| 1,120,200 POS || Tokens| Tokens Tokens Roots Roots
(n,dir) || 0.0726 | 1,049,175 NN 15.94 4.31: 36.67 0.10: 23.40
(cn,dir) || 0.0728 | 1,047,157 IN 11.85| 13.54 0.57 0.24 4.33
(ce,dir) || 0.2361 904,102.4 NNP 11.09| 20.49' 12.85 0.02! 32.02
(ch,ce, dir) || 0.3320 789,594.3 DT 9.84 | 23.34 : 0.34 0.00: 0.04
J] 7.32 4.33 3.74 0.01 1.15
Table 3: Coefficients of determinatiof{) and Akaike NNS 7.19 4491 20.64 | 015 17.12
information criteria (AIC), both adjusted for the number ~ P 437\ 129, 692| 000, 327
of parameters, for several single-predictor logistic niede RB 3.71 5961 3.88 0.000  1.50
VBD 3.65 0.09' 3.52| 46.65' 0.93

of non-adjacent stops, given directidir; ¢, is the class

| |
of the headn is its number of descendants (so far) to that .17 0.44, 167 04§ 6.81

2.86 5931 0.00 0.000  0.00

side, and-. represents the farthest descendant (the edge). 267 0.37: 005l 00 0.44
o VBZ 2.57 0.17, 1.65/ 2831, 0.93
scendants on that side,instead of the head’s class.  ygy 242 061' 2571 0658 1.8
In contrast, using. in place ofc, boosts explanatory ~ prp 2.08| 904, 134 000 000
power to 24%, keeping the number of parameters the VBG 177 1-26: 0.64 0-19 0.97
same. If one were willing to roughly square the size VBP 1?3 8'8? 8'22 1;*'22 i 8';%
of the model, explanatory power could be improved  pog 105 000! o011 o001 004
further, to 33% (see Table 3), using bethandc;,. PRP$ 1.00 0.90, 0.0 004 000
Fringe boundaries thus appear to be informative WDT 052 0.8, 000 00} 013
JIR 0.39 0.18' 0.43 0.00 0.09

even in the supervised case, which is not surprising,
. o o : 0.32| 000, 042 00d4 0.0
since using just one probability factor (and its com-  yyps 030| 020, 056 009 296

plement) to generate very short (geometric coin-flip) wp 0.28 042! 001 001 004
sequences is a recipe for high entropy. But as sug- WRB 026 0.8, 002 00} 031
gested earlier, fringes should be extra attractive in 23 0231 0271 006 000 000
<od . b old b ble. FER 0.21 020/ 054 000 004
unsupervised settings because yie s are observable, gy 010| 075! o000 004 000
whereas heads almost always remain hidden. More- rgs 0.05 0.061 0.01 0.00 0.00
over, every sentence exposes two true edges (Hanig, PDT 0.04 0.08, 000 004 000
2010): integrated over many sample sentence begin- F¥ 003\ 001, 005 000 009
[ d ends, cumulative knowledge about such wps 0.02 .00 000 000 000
nings an . ! ge ¢ N yy 0.01| 008 005 00d 062
markers can guide a grammar inducer inside long in-  syy 0.01 011, 001 00Q 018
puts, where structure is murky. Table 4 shows distri- Ls 001| 0.09' 0.0 000 0.0

butions of all part-of-speech (POS) tags in the tree-

bank versus in sentence-initial, sentence-final anT ble 4: Empirical distributions for non-punctuation part

. ) of-speech tags in WSJ, ordered by overall frequency, as
sentence-root positions. WSJ often leads with dete\f\iell as distributions for sentence boundaries and for the

miners, proper nouns, prepqsitions gnd pronouns Tgots of complete and incomplete sentences. (A uniform
all good candidates for starting English phrases; andistribution would have /36 = 2.7% for all POS-tags.)
its sentences usually end with various noun types,

again consistent with our running example. T—3. Jp=dz || All | First | Last | Sent., Frag.

Uniform || 0.48 | 0.581 0.64] 0.79 0.65

4.2 Experimental Results " Al " " 70357 0.40] 0.79" 042
. First , 059 0.94, 057

Table 2 shows DBM-1 to be substantially more ac- TSt T T T 7T T T 0.837 0.99°
curate than the DMV, on average: 38.8 versus 33.5% Sent. [ 0.86

after 40 steps of EM.Lateen termination improved _ _ _ o
both models’ accuracies slightly, to 39.0 and 34.004able 5: A distance matrix for all pairs of probability dis-

. . . . . . tributions over POS-tags shown in Table 4 and the uni-
respectively, with DBM-1 scoring five points higher. form distribution; the BC- (or Hellinger) distance (Bhat-

"DBM-1's 39% average accuracy with uniform-at-randomt@charyya, 1943; Nikulin, 2002) between discrete distri-

initialization is two points above DMV's scores with the “ad butions;_) andg (ove_ra: e X) ranges from zero (ifp = q)
hoc harmonic” strategy, 37% (Spitkovsky etal., 2011a,@&pl  to one (iffp- ¢ = 0, i.e., when they do not overlap at all).
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Figure 3: Histograms of lengths (in tokens) for 2,261 ncedshl fragments (red) and other sentences (blue) in WSJ.

5 Dependency and Boundary Model Two  (complete) roots, suggesting that heads of fragments

too may warrant their own multinomial in the model.
DBM-2 adapts DBM-1 grammars to two classes . i
Further, incomplete sentences are uncharacteris-

of inputs (complete sentences and incomplete fra%bally short (see Figure 3). It is this property that

ments) by forking off new, separate multinomials for . .
. . L makes them particularly treacherous to grammar in-
stopping decisions and root-distributions (§2e2).

ducers, since by offering few options of root posi-

tions they increase the chances that a learner will
) incorrectly induce nouns to be heads. Given that ex-
l_JnrepreserjtatNe short sentence_s — such as he% cted lengths are directly related to stopping deci-
lines and titles — are common in news-style dat ions, it could make sense to also model the stopping

and pose a known nuisance ©0 grammar inducer robabilities of incomplete sentences separately.
Previous research sometimes took radical measures

to combat the problem: for example, Gillenwatels 2  Experimental Results

et al. (2009) excluded all sentences with three or o i i
ve§|nce it is not possible to consult parse trees during

and Zabokrtsky (2011) enforced an “anti-noun-rootd"2Mmar induction (to check whether an input sen-
policy to steer their Gibbs sampler away from thg®nce Is clgusal), we opted for.a proxy. presence (_)f
§%ntence-f|nal punctuation. Using punctuation to di-

undercurrents caused by the many short noun-phrasg ™ )
de input sentences into two groups, DBM-2 scored

fragments (among sentences up to length 15, A i
Czech data). We refer to such snippets of text ahlgher. 40.9, up from 39.0% accuracy (see Table 2).

» and focus our study of WSJ After evaluating these multi-lingual experiments,
yve checked how well our proxy corresponds to ac-
stituent annotations whose first character is$)ct tual clausal sentences in WSJ. Table 6 shows the bi-

Table 4 shows that roots of incomplete sentence8a"Y confusion matrix. having "’_‘fa"'y low (but pg.si—
which are dominated by nouns, barely resemble tHlve) Pearson correlation coefficient. False positives

5.1 Analytical Motivation

“incomplete sentences
on non-clausal data (as signaled by top-level co

other roots, drawn from more tradltlc_>r_1al verb apd ry ~ 031 || Clausal | non-Clausal|  Total
modal types. In fact, these two empirical root dis- Punctuation|| 46,829 1.036] 48765
tributions are more distant from one another than ei- _no Punctuation 118 325 443
ther is from the uniform distribution, in the space of Total || 46,947 2,261 49,208

discrete probability distributions over POS-tags (se‘?able 6: A contingency table for clausal sentences and

Table 5). Of the d_lstrlbutlons we consujered, onI3frai|ing punctuation in WSJ; the mean square contingency
sentence boundaries are as or more different frogyefficientr, signifies a low degree of correlation. (For

.., separating top-level typds, SINV, SBARQ, SQ, SBAR} two binary variablesry is equivalent tq Karl Pe_a_rson’s
from the rest (ordered by frequencyiP, FRAG, X, PP, . . .}. better-known product-moment correlation coefficieny,



include parenthesized expressions that are markéd® Experimental Results Postponed
as noun-phrases, such ¢ee related story: “Fed
Ready to Inject Big Funds”: WSJ Oct. 16, 1989)
false negatives can be headlines having a main ve

As we mentioned earlier (s€8), there is little point
rlg testing DBM-3 with shorter sentences, since most

e.g.,Population Drain Ends For Midwestern States séntence-internal punctuation occurs in longer in-

Thus, our proxy is not perfect but seems to be tolelp_)uts. Instead, we will test this model in a final step of

able in practice. We suspect that identities of punca—1 staged training strategy, with more data (5£8).

tuation marks (Collins, 2003, Footnote 13) — both )
sentence-final and sentence-initial — could be of ex. A Curriculum Strategy for DBMs

tra assistance in grammar induction, specifically fo\rN o trai to DBM-3 iterativel
grouping imperatives, questions, and so forth. ¢ propose o frain up 1o ~o lteralively —

by beginning with DBM-1 and gradually increasing
6 Dependency and Boundary Model Three model complexity through DBM-2, drawing on the
intuitions of IBM translation models 1-4 (Brown et

DBM-3 exploits sentence-internal punctuation conz; 1993). Instead of using sentences of up to 15 to-
texts by modeling punctuation-crossing dependenqyens’ as in all previous experimentg5), we will

arcs separately from other attachments (28). .,y make use of nearly all available training data:

up to length 45 (out of concern for efficiency), dur-

ing later stages. In the first stage, however, we will

Many common syntactic relations, such as betwegr., only a subset of the data with DBM-1, in a pro-

a dete_rmlner and a noun, are unlikely to hold OVeloss sometimes calledirriculum learning(Bengio
long distances. (In fact, 45% of all head-percolate(g al., 2009; Krueger and Dayan, 2008ter alia)
dependencies in WSJ are between adjacent Word6 r grammar inducers will thus be “starting small”

However, some common cons?ructl_ons are More s oth senses suggested by Elman (1993). simulta-
mote: e.g., subordinating conjunctions are, on a

) \ﬁeously scaffolding on mode&nd data-complexity.
erage, 4.8 tokens away from their dependent modal
verbs. Somgtlmes Ionger-_dlstance depend_enues can Scaffolding Stage #1: DBM-1
be vetted using sentence-internal punctuation marks.
It happens that the presence of punctuation b&/e begin by training DBM-1 on sentences with-
tween such conjunctionIf) and verb ¥D) types out sentence-internal punctuation but with at least
serves as a clue that they are not connected (see dae trailing punctuation mark. Our goal is to avoid,
ble 7a); by contrast, a simpler cue — whether thesevhen possible, overly specific arbitrary parameters
words are adjacent — is, in this case, hardly of aniike the “15 tokens or less” threshold used to select
use (see Tablebj. Conditioning on crossing punc- training sentences. Unlike DBM-2 and 3, DBM-1
tuation could be of help then, playing a role simi-does not model punctuation or sentence fragments,
lar to that of comma-counting (Collins, 199§2.1) so we instead explicitly restrict its attention to this
— and “verb intervening” (Bikel, 20045.1) — in  cleaner subset of the training data, which takes ad-
early head-outward models for supervised parsingvantage of the fact that punctuation may generally

correlate with sentence complexity (Frank, 2090).

6.1 Analytical Motivation

a) ry~ —0.40 || Attached| not Attached Total

Punctuation 337 7.645| 7,982 Aside from input sentence selection, our exper-
no Punctuation 2,144 4,040/ 6,184 imental set-up here remained identical to previous
Total 2,481 11,685] 14,166  training of DBMs {4-5). Using this new input data,
non-Adjacent 2,478 11,673| 14,151

Adjacent 3 12 15 DBM-1 averaged 40.7% accuracy (see Table 8).
b) r, ~ +0.00 || Attached| not Attached Total  This is slightly higher than the 39_.0% when using
sentences up to length 15, suggesting that our heuris-
Table 7: Contingency tables fam right-attachingD, tic for clean, simple sentences may be a useful one.
among closest ordered pairs of these tokens in WSJ sen-
tences with punctuation, versus: (a) presence of interven- sy;qre incremental training strategies are the subject of an
ing punctuation; and (b) presence of intermediate wordsypcoming (companion) manuscript (Spitkovsky et al., 2012a




Directed Dependency Accuracies fofr: Best of State-ofAttie&Systems

CoNLL Year this Work (@10) Monolingual; POS- Cross-Lingual

& Language | DMV | DBM-1 | DBM-2 ; DBM-3 | +inference| (i) Agnostic | (ii) Identified (iii) Transfer
Arabic 2006 12.9 10.6 11.0 11.1  10.8s45) || 33.4 SCAY ' — 50.2 Sbg |
7 || 36.6 43.9, 440 444 44Qus || 556 RF | 54.6 RFy, — !

Basque 7 32.7 34.3 33.0 327 33365 || 43.6 SCAY | 34.7 MZnRr — :
Bulgarian '7 24.7 59.4 63.6 64.6 65.2 (704) | 44.3 SCAJ ' 53.9 RFy g, | 70.3 Spi |
Catalan 7| 411 61.3 61.1 6L 62.%s1 || 63.8 SCA} |, 56.3 MZyr | — !
Chinese '6 50.4 63.1 63.0 632 63@s7 | 63.6 SCAY I — — :
7 55.3 56.8! 57.0! 57.1 57.0s9s8) || 58.5 SCA% : 34.6 MZNR — |

Czech 6| 315 51.3 528 53.0 55.1 @19 || 50.5 SCAJ , — — !
7 || 345 5051  51.2 53.3 54.2 (673) || 49.8 SCAJ | 42.4 RFRyes | — |

Danish 6| 224 21.3 19.9 21.8 22274 | 46.0 RF | 53.1 RRy, | 56.5 Sar |
Dutch 6 || 44.9 459, 465  46.0 46.6 (s || 32.5 SCAJ | 48.8 RFyye, | 65.7 MPHm:p !
English 7 32.3 29.2i 28.6 29. 29.¢14) || 50.3 SAJ | 23.8 MZNR | 45.7 MPHg :
German 6| 27.7 36.3 37.9 38.4 39.1 (s2) || 33.5 SCAJ | 21.8 MZpyR | 56.7 MPHyq |
Greek '6 36.3 28.1, 26.3 26.1 26.%69 || 39.0 MZ | 33.4 MZyR | 65.1 MPHm;p !
Hungarian 7| 23.6 43.2 52.1 57.4 58.2 (68.4) | 48.0 MZ ! 48.1 MZNR — :
Italian 7 25.5 41.7: 39.8: 39.9 40.7s18) || 57.5 MZ : 60.6 MZNR 69.1 MPHpt |
Japanese ' 42.2 22.8 22,7 22,7 223%5) || 56.6 SCA% 1| 53.5 MZNR — !
Portuguese 6  37.1 68.9 7233 TU172.4 00) || 43.2 MZ | 558 RFyg, | 76.9 Spg :
Slovenian '6 334 30.4: 33.¢ 34.1 35.2 @es) || 33.6 SCAJd | 34.6 MZnR — I
Spanish '6 22.0 25.0 26.7 271 28218 || 53.0 MZ I 54.6 MZNR 68.4 MPH;; '
Swedish  '6 30.7 48.6 50.3 50.0 50.7 (3.2) || 50.0 SCAJ : 34.3 RFy;¢o | 68.0 MPHm:p :
Turkish '6 43.4 32.9: 33.7: 33.4 34.4@sy || 409 SAJ 1 61.3 RRy, — I
7 58.5 44.6 442, 43.7] 44.8444) || 48.8 SCAJ ' — — J'
Average: 33.6 40.7! 41.7 427 429 (s19) || 38.2 SCAJd (bestaveragenot an average of bests)

Table 8: Average accuracies over CoNLL evaluation setséaitences), for the DMV baseline and DBM1-3 trained
with a curriculum strategy, and state-of-the-art resudtssfystems that: (i) are also POS-agnostic and monolingual,
including SCAJ (Spitkovsky et al., 2011a, Tables 5-6) and §pitkovsky et al., 2011b); (ii) rely on gold POS-tag
identities to discourage noun roots (Marecek and Zabkkrt2011, MZ) or to encourage verbs (Rasooli and Faili,
2012, RF); and (iii) transfer delexicalized parsers (Sedja2011a, S) from resource-rich languages with transla-
tions (McDonald et al., 2011, MPH). DMV and DBM-1 trained dmple sentences, from uniform; DBM-2 and 3
trained on most sentences, from DBM-1 and 2, respectivéhferenceis DBM-3 with punctuation constraints.

7.2 Scaffolding Stage #2: DBM-2— DBM-1 uniformly-at-random chosen dependency trees for
the new complex and incomplete sentences, subject
Next, we trained on all sentences up to length 43, 1 \nctyation-induced constraints. This approach

Since these inputs are punctuation-rich, in both MGmproved parsing accuracies to 41.7% (see Table 8).
maining stages we used the constrained Viterbi EM

set-up suggested by Spitkovsky et al. (2011b) |n7 3 Scaffolding Stage #3: DBM-3— DBM-2
stead of plain soft EM; we employ an early termina-
tion strategy, quitting hard EM as soon as soft EM'§\Next, we repeated the training process of the pre-
objective suffers (Spitkovsky et al., 2011a). Puncvious stage §7.2) using DBM-3. To initialize this
tuation was converted into Viterbi-decoding conmodel, we combined the final instance of DBM-2
straints during training using the so-callédose with uniform multinomials for punctuation-crossing
method, which stipulates that all words in an interattachment probabilities (s€8.3). As a result, av-
punctuation fragment must be dominated by a singlerage performance improved to 42.2% (see Table 8).
(head) word, also from that fragment — with only | astly, we applied punctuation constraints also in
these head words allowed to attach the head worggerence. Here we used ttprawl method — a
of other fragments, across punctuation boundariesmore relaxed approach than in training, allowing ar-
To adapt to full data, we initialized DBM-2 using bitrary words to attach inter-punctuation fragments
Viterbi parses from the previous stadé (1), plus (provided that each entire fragment still be derived



by one of its words) — as suggested by Spitkovsk$.1 Monolingual POS-Agnostic Inducers

et al. (2011b). This technique increased DBM-3'Sre first type of grammar inducers, including our
average accuracy to 42.9% (see Table 8). Our fisyn approach, uses standard training and test data
nal result substantially improves over the baseline’getS for each language, with gold part-of-speech tags
33.6% and compares favorably to previous witk. g anonymized word classes. For the purposes of
this discussion, we also include in this group trans-
ductive learners that may train on data from the test

DBMs come from a long line of head-outward mod-S€ts- Our DBM-3 (decoded with punctuation con-

els for dependency grammar induction yet their gerst@ints) does well among such systems — for which
erative processes feature important novelties. Orgcuracies omll sentence lengths of the evaluation
is conditioning on more observable state — Specifi§ets are reported — attaining .hlghest. scores for 8 of
cally, the left and right end words of a phrase beind® 12nguages; the DMV baseline is still state-of-the-
constructed — than in previous work. Another is aldt .for one Iar]guage; and the remaining 10 bests are
lowing multiple grammars — e.g., of complete anosPI't among five other recent systems (see Tablé 8).

incomplete sentences — to coexist in a single modél'!_alf of th_e five came from various lateen EM strate-
These improvements could make DBMs quick-anddi€S (Spitkovsky et al., 2011a) for escaping and/or
easy to bootstrap directly from any available partiaf“/o'd'_ng local optlmg. These heuristics are compat-
bracketings (Pereira and Schabes, 1992), for exaif!e With how we trained our DBMs and could po-

ple capitalized phrases (Spitkovsky et al., 2012b). tentially provide further improvement to accuracies.
The second part of our work — the use of a cur- Overall, the final scores of DBM-3 were better, on

riculum strategy to train DBM-1 through 3 — elim- average, than thos_e of any other single system: 42.9
inates having to know tuned cut-offs, such as serfsSUS 38.2% (Spitkovsky et al,, 2011a, Table 6).

tences with up to a predetermined number of token;l,_he progression of scores for DBM-1 through 3

Although this approach adds some complexity Wg]ithout using punctuation constraints in inference
, We' o : .

chose conservatively, to avoid overfitting settings 4(_)'7’ 41.7 and 42.2% — fell entirely above this
fevious state-of-the-art result as well; the DMV

of sentence length, convergence criteria, etc.: sta@ i ) i i
one’s data is dictated by DBM-1 (which ignores aseline — also trained on sentences without inter-

i 1 i N 0
punctuation); subsequent stages initialize addition&al but with final punctuation — averaged 33.6%.

pieces uniformly: uniform-at-random parses fornevg 2> Monolingual POS-Identified Inducers
data and uniform multinomials for new parameters

8 Discussion and the State-of-the-Art

. . . . _ . The second class of techniques assumes knowledge
Even without curriculum learning — trained with . .
about identities of part-of-speech tags (Naseem et

vanilla EM — DBM-2 and 1 are already Strong'al., 2010), i.e., which word tokens are verbs, which
Further boosts to accuracy could come from em-

loying more sophisticated optimization al orithmsOneS are nouns, etc. Such grammar inducers gener-
2 y bgetter EM F()Samdani etpal 2012) cgnstraine%”y do better than the first kind — e.g., by encour-
9. ” ' aging verbocentricity (Gimpel and Smith, 2011) —

Gibbs sampling (MareCek and Zabokrtsky, 2011) 0{hough even here our results appear to be compet-
locally-normalized features (Berg-Kirkpatrick et al.

itive. In fact, to our surprise, only in 5 of 19 lan-
2010). Other orthogonal dependency grammar In'uages a “POS-identified” system performed better

duction techniques — including ones based on unf “ e
versal rules (Naseem et al., 2010) — may also benr-1an all of the "POS-agnostic” ones (see Table 8).

efit in combination with DBMs. Direct comparisons8.3  Multi-Lingual Semi-Supervised Parsers

fo previous work require some care, however, af e final broad class of related algorithms we con-

there are seve_ral classes Of_ sy stems that make dered extends beyond monolingual data and uses
ferent assumptions about training data (see Table 8).

For Turkish '06, the “right-attach” baseline outperforms
ONote that DBM-1’s 39% average accuracy with standargven the DMV, at 65.4% (Rasooli and Faili, 2012, Table 1); an
training (see Table 2) was already nearly a full point highan  important difference between 2006 and 2007 CoNLL data sets
that of any single previous best system (SgAJ see Table 8). has to do with segmentation of morphologically-rich larges



both identities of POS-tags and/or parallel bitextsoupling the two frameworks, as well as showing
to transfer (supervised) delexicalized parsers acrossys to incorporate both kinds of information in
languages. Parser projection is by far the most suother state-of-the art grammar induction paradigms.
cessful approach to date and we hope that it too

may stand to gain from our modeling improvements'.a\CknOW|Gdgments
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