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Abstract

This paper describes the design and imple-
mentation of the slot-filling system prepared
by Stanford’s natural language processing
group for the 2011 Knowledge-Base Popula-
tion track at the Text Analysis Conference.
Our system relies on a simple distant super-
vision approach, using mainly resources fur-
nished by the track’s organizers: we used slot
examples from the provided knowledge base,
which we mapped to documents from several
corpora — those distributed by the organizers,
Wikipedia, and web snippets. This system is a
descendant of Stanford’s entry into last year’s
evaluation, with several improvements: an in-
ference process that allows for multi-label pre-
dictions and uses world-knowledge to validate
outputs; model combination; and a tighter in-
tegration of entity coreference and web snip-
pets in the training process. Our submission
scored 16 F1 points using web snippets and
13.5 F1 without web snippets (both scores are
higher than the median score of 12.7 F1). We
also describe our temporal slot-filling system,
which achieved 62 F1 points in the diagnostic
temporal task on the test queries.

1 Introduction

This paper describes the slot-filling system prepared
by Stanford’s natural language processing (NLP)
group for the Knowledge-Base Population (KBP)
track of the 2011 Text Analysis Conference (TAC).
This system is derived from Stanford’s distantly-
supervised system submitted last year, with sev-
eral important changes. First, we re-implemented
the inference component. The current model al-
lows multiple labels to be assigned to the same
slot value. For example, “California” could be
extracted as both per:stateorprovince of birth

and per:stateorprovince of residence for a

given entity. Previously, each slot candidate was
assigned exactly one label during inference. Fur-
thermore, the inference module now includes a filter
that discards slots that do not support several world-
knowledge constraints, e.g., that a company cannot
be dissolved before it is founded, etc. Second, we
implemented a system combination model, which
votes between ten different systems trained on dif-
ferent fragments of the knowledge base. Third, we
incorporated web snippets and coreference chains
(for entity matching) into training. Previously, this
information was used only in inference. Lastly, we
implemented several extensions to handle the tem-
poral slot-filling task. We used SUTIME (Chang and
Manning, 2012) to identify temporal expressions in
text (e.g., “first Friday of this month”) and normalize
them to the required format. Our system then asso-
ciated temporal constraints to slot names and values.
We found that using simple heuristics — and an-
choring them to the dates of the retrieved documents
— can already yield reasonably high F1 scores.

We entered our system into both main and tempo-
ral slot-filling tasks. In the main task, we submitted
two runs: one where web snippets were used in both
training and evaluation; and one where no web infor-
mation was used. These runs scored 16 and 13.5 F1

points, respectively. (Both scores are higher than the
median of all entries, 12.7 F1.) In the temporal task,
we submitted our results for two sub-tasks: regular
and diagnostic. (In the diagnostic temporal task, the
system is given correct slot names, values and the
documents.) We achieved around 62 F1 points in the
diagnostic task and 3.7 F1 points in the regular task.

2 Architecture of the Slot-Filling System

Figure 1 summarizes our system’s architecture. For
clarity, we present two distinct execution flows: one
for training the slot classifier, and one for evaluat-
ing the entire system. Next, we describe all of the
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Figure 1: Architecture of the slot-filling system. Bolded blocks are either new or significantly changed since last year.

system components, focusing primarily on ones that
are new and those which have significantly changed
since last year. For details of the remaining compo-
nents, we refer the reader to our paper from the pre-
vious TAC-KBP evaluation (Surdeanu et al., 2010).

2.1 Training

The training process starts by mapping Wikipedia
infobox fields to KBP slot types. For example,
the infobox field University:established maps
to the KBP slot type org:founded. Next, we re-
trieve sentences that contain the previously gener-
ated slot instances by querying all our document
collections with a set of queries, where each query
contains an entity name and one slot value, e.g.,
“Barack Obama” AND “United States” for the slot
per:employee of. From the documents retrieved,
we keep only sentences that contain both the en-
tity name and the slot value. This process differs
from last year’s system in two ways. First, we re-
trieve more content from the document collections:
for each entity, we retrieve up to 200 sentences

from non-web collections and up to 500, per entity,
from the index containing web snippets. This year
we could do this without significant overhead be-
cause we pre-processed (our pre-processing includes
named entity recognition, parsing, and coreference
resolution) all collections offline. Second, we used a
different set of document collections, consisting of:

1. The official corpus provided by the organizers;

2. Snippets of Wikipedia articles from the 2009
KBP Evaluation Reference Knowledge Base,
pre-processed similarly to last year’s system;

3. An English Wikipedia dump from June 2010;

4. A collection of entity-specific web snippets, ex-
tracted as follows: for each entity, we con-
structed a set of queries consisting of the entity
name plus one of the trigger phrases from our
list of slot-specific triggers.1 For each query,
we retrieved the top ten snippets from Google.

1http://nlp.stanford.edu/pubs/
kbp_trigger_words.txt



1 Slots defined in groups per:city of birth, per:stateorprovince of birth and
per:country of birth must exist and be compatible in a gazetteer of world locations.

2 Slots defined in groups per:city of death, per:stateorprovince of death and
per:country of death must exist and be compatible in a gazetteer of world locations.

3 Slots of org:city of headquarters, org:stateorprovince of headquarters and
org:country of headquarters must also exist and be compatible in a gazetteer...

4 per:date of birth should be before per:date of death, if both are defined.
5 org:founded should be before org:dissolved, if both are defined.
6 Extracted slot values for org:subsidiaries must not overlap with the set for org:parents.

Table 1: World-knowledge constraints used during inference.

To extract slot candidates, we followed Mintz et
al. (2009) in assuming that all sentences containing
a reference to the entity of interest and a known slot
value are positive examples for the corresponding
slot type. We considered as “valid references” any
mentions from coreference clusters where at least
one element matched the entity’s name, using the
coreference resolution system of Lee et al. (2011).

We generated negative slot examples as follows:

• We extracted candidates: all named entity men-
tions in a window of 20 words to the left and
right of a valid mention of the entity of interest;

• We compared each candidate with the infobox
slot values of the given entity. If the candidate’s
named entity (NE) label is compatible with a
slot type (e.g., the NE label LOC is compati-
ble with per:stateorprovince of birth) and
its text does not match the corresponding slot
value in the infobox, then we mark this candi-
date as a negative example for that slot type.

Note that this heuristic yields a different set of neg-
ative examples for each slot type. To accommodate
this setup, we trained the slot classifier using a bat-
tery of one-versus-rest logistic regression models,
one for each slot type (rather than a single multi-
class classifier, which would require a single set
of negative examples). We used the same features
as last year. To control for the excessive number
of negative examples, we subsampled them with a
probability of 0.01 (Riedel et al., 2010).

2.2 Evaluation
The sentence retrieval process used during evalu-
ation is similar to the one used when training the

model, with two exceptions. First, we retrieve more
sentences per entity: up to 500 from the Wikipedia
and KBP corpora; and up to 1,000 from the collec-
tion of web snippets. Second, the queries used dur-
ing evaluation contain just the entity name. In con-
trast to last year, we did not include trigger words in
the evaluation queries. (In preliminary experiments,
this led to a higher recall of the retrieval module —
most likely because our list is far from complete.)

We re-architected the inference component this
year. Our new algorithm works as follows:

1. For each tuple (entity name, slot value) we sum
the classification probabilities for all instances
of this tuple in the data and all valid slot types
(i.e., per:* slots for persons and org:* slots for
organizations). Note that the resulting scores
for a given slot type are no longer probabilities.

2. We discard all predictions with a score be-
low a threshold τi, which is tuned using
a set of development queries. This natu-
rally models multi-label predictions, where
the same (entity name, slot value) tuple may
have multiple valid labels. As an example
of multi-label prediction, for a given entity,
the slot value “California” may be classified
as both per:stateorprovince of birth and
per:stateorprovince of residence. Our in-
ference model is similar to that of Hoffmann et
al. (2011), but with local training (i.e., one da-
tum per slot mention, instead of having all men-
tions with the same value modeled jointly).

3. Lastly, for each entity in the test data, we keep
the set of predictions with the highest overall
score that satisfy a series of world-knowledge
constraints (see Table 1 for the complete list).



For the slots produced by the inference process,
we identify a supporting document by querying the
official index for the entity and its slot value. If a
document exists in the official index with both terms
in the same sentence, that document is returned as
the supporting document. If multiple documents
meet this criterion, the one with the terms closest
together is returned, with ties broken by the infor-
mation retrieval (IR) score. (And if there is no such
document, we fall back to the highest-IR result.)

The evaluation execution flow concludes with
model combination. We observed early in the devel-
opment of the system that training on more than 10%
of the provided knowledge base did not improve per-
formance. To still take advantage of all the available
training data, we chose to train ten different models
(each using a disjoint ten percent of the knowledge
base) and combine their outputs. We implemented a
simple combination strategy based on voting, where
an extracted slot value is included in the final output
if it has been proposed by more than τc base models.

3 Architecture for Temporal Slot-Filling

The temporal system extracts 4-tuples of dates, [T1
T2 T3 T4], for each non-NIL slot value, which is
either given (as in the case of diagnostic task) or ex-
tracted by the main slot-filling system. We extracted
temporal expressions from sentences and normal-
ized them to the YYYYMMDD format. When the
year or month was missing from a date t, we con-
verted it to a range, t-start and t-end. For example,
201110XX is converted to 20111001 and 20111031.
When a date is fully specified, t-start and t-end
have the same value. We then assigned T3 as t-start
and T2 as t-end. For sentences from which we did
not extract any temporal expressions, we used the
date of their documents, when available.

3.1 A Start/End Model

We also submitted a second system in which we
tried to learn n-grams associated with starts and
ends of events. For example, bigrams like “joined
on” and “left on” generally mark the starts and ends
of events, respectively. To learn these n-grams,
we used Freebase to get temporal constraints on
relations and found sentences in the correspond-
ing Wikipedia articles that contained those tempo-

ral expressions. Whenever a temporal value in Free-
base matched a temporal expression from a sentence
in Wikipedia, we considered bigrams and trigrams
around a window of five words on each side of the
temporal expression. We labeled the n-grams de-
pending on whether the temporal value in the Free-
base occurred as start or end. We then weighted the
n-grams using a tf-idf-like score, using document
frequencies from Google’s n-gram corpus (LDC cat-
alog number LDC2006T13). When classifying a
temporal expression as start or end at testing time,
we computed Jaccard’s coefficient between the class
n-grams and the n-grams around the temporal ex-
pression, and thresholded the values to assign a par-
ticular label. We set the values of T1 and T2 if the
label was start and T3 and T4 if the label was end.

4 Experiments

We report first experiments that highlight the con-
tributions of the novel components of our system.
For these experiments we used the 100 queries from
the 2010 KBP evaluation. We randomly selected 20
questions to tune the two system parameters (τi and
τc) and used the remaining 80 for testing. We de-
vised six different experiments (summarized in Ta-
ble 2); Table 3 shows the results. Note that in this
analysis we ignored the extracted supporting docu-
ment (i.e., scorer parameter anydoc was set to true),
for two reasons. First, we wanted to focus on the
core components of the system (classification, infer-
ence, and model combination), instead of the extrac-
tion of supporting documents. And second, since
gold answers are based on submitted runs, they are
incomplete with respect to supporting documents.

Table 3 indicates that multi-label inference (Ex-
periment 2) improves over the baseline (Experiment
1) by more than 1 F1 point. Note that the baseline
model selects exactly one label for each slot candi-
date (similarly to our approach from last year). As
expected, the improvement is caused by a significant
boost in recall (2.5 absolute percentage points).

The world-knowledge constraints (Experiment 3)
contribute only 0.3 F1 points. This modest improve-
ment can be explained by constraints often empha-
sizing the errors made by the local classifier, instead
of correcting them. For example, constraint 1 in Ta-
ble 1 may lead to the removal of up to three slot



Multi-label World Knowledge Web Model
Inference in Inference Snippets Combination

Experiment 1
Experiment 2

√

Experiment 3
√ √

Experiment 4
√ √ √

Experiment 5
√ √ √ √

Experiment 6
√ √ √

Table 2: Configuration of experiments: #5 is our submission with web snippets; and #6 is our system without them.

P R F1

Experiment 1 20.5 13.1 15.6
Experiment 2 18.7 15.6 16.7
Experiment 3 19.1 15.9 17.0
Experiment 4 27.1 16.4 20.2
Experiment 5 26.3 19.2 22.2
Experiment 6 21.6 17.4 19.3

Table 3: Development evaluation on 80 queries from the
2010 test set; remaining 20 queries were used for param-
eter tuning. These scores were generated using the offi-
cial KBP scorer, with the anydoc parameter set to true.
For experiments without model combination (1–4), the
scores are averages over the ten different models trained
on distinct partitions of the knowledge base; for the other
experiments (5–6), which do involve model combination,
we scored the combined output of the ten base models.

candidates, even when only one of them is incorrect.
On the other hand, web-snippets (Experiment 4)

contribute a significant 3.2 F1 points, most likely be-
cause they bring to the table more recent data that
was already deemed as highly correlated with the
entity of interest by the search engine. Our results
indicate that such dynamically-added information is
complementary to static collections of documents.

Lastly, model combination is also successful,
leading to an increase of 2 F1 points when the web
snippets are used (Experiment 5) and 2.3 points
without web snippets (Experiment 6). This is fur-
ther evidence that model combination yields a ben-
eficial regularization effect that is not provided by
base models alone. All in all, this year’s improve-
ments led to an increase of 6.6 F1 points (a 42% rel-
ative improvement), compared to last year’s system.

Table 4 lists our official scores in this year’s eval-
uation. We submitted two runs: one using web snip-

pets in training and testing (equivalent to Experi-
ment 5 in Table 2) and one which did not access
the web at all (equivalent to Experiment 6). Both
runs scored above the median entry reported by the
evaluation’s organizers. We find this outcome en-
couraging, especially considering the simplicity of
our approach. One troubling observation, however,
is that our entries scored significantly lower than
in development (e.g., the F1 for our submission us-
ing web snippets is 4.2 points below Experiment 5).
Although these numbers are not directly compara-
ble (because of differences in evaluation queries),
this large difference suggests that our component for
finding supporting documents — the only difference
between the two set-ups other then the evaluation
queries — requires further attention.

P R F1

LDC 86.2 72.6 78.8
Top-1 team 35.0 25.5 29.5
Top-2 team 49.2 12.6 20.0
Stanford with web 17.1 15.0 16.0
Stanford without web 14.1 13.0 13.5
Median team 10.3 16.5 12.7

Table 4: Official results on the 2011 test queries.

4.1 Temporal Slot-Filling
Our submission attained around 62 F1 on the diag-
nostic task, but only 3.7 F1 points for the full tem-
poral slot-filling task, on the test queries. The best
system scored around 64 F1 for the diagnostic and
22.7 F1 on the full task. It is unclear why our system
performs poorly on the full task, but it is likely that
there may have been an integration bug between the
temporal module and the slot-filling system.



Table 5 shows precision, recall and F1 scores for
the diagnostic temporal task on the development
queries. The document date alone is already quite
predictive of temporal values. Our system improves
over this baseline by using both document dates and
temporal information in sentences. However, adding
also the Start/End model had a negative impact, sig-
naling a need for more sophisticated approaches.

5 Conclusions and Future Work

This paper describes Stanford’s submission to the
TAC-KBP 2011 slot-filling evaluation. Our system
extends the distantly-supervised approach from last
year (Surdeanu et al., 2010) with a better inference
model, model combination, and access to more data
sources. We attained results that are above the me-
dian score (12.7 F1): 16 F1 points for the run that ac-
cessed the web; and 13.5 F1 for the run without web
access. An ablative analysis indicates that the im-
provements to this year’s system are responsible for
a 42% (relative) performance gain. In temporal slot-
filling, we showed that using document dates and
simple heuristics gives reasonably high F1 scores.

Our results in the main slot-filling task are close
to the distant supervision component of the top-
performing system (Sun et al., 2011). That combina-
tion of techniques (distant supervision, rule-based,
and question answering) obtained a much better
overall score. But the fact that two independent
groups obtained similar scores with distant supervi-
sion suggests that we may be approaching its ceiling.

There is at least one crucial element missing from
our system: Riedel et al. (2010) showed that the as-
sumption that sentences containing an entity name
and known slot values are positive examples for
the relevant slot type is often wrong — particu-
larly in non-Wikipedia collections; several recently-
proposed models (Riedel et al., 2010; Hoffmann et
al., 2011, inter alia) address this problem. In the fu-
ture, we will work on relaxing our dependence on
this strong assumption. And we will also explore
ways of improving our temporal slot-filling system.

P R F1

All-null baseline 37.0 12.9 19.2
Document-date baseline 66.3 23.2 34.3
Our system 71.3 24.9 37.0
Our system + Start/End model 59.5 20.8 30.8

Table 5: Diagnostic temporal results on the 2011 devel-
opment queries. We built two baselines: the first sets
all temporal slots to NIL; the second assigns T2 and T3
based on the document date. Our system, which extends
the second baseline by using the date syntactically modi-
fying the slot, when available, is listed next. The last row
shows our system combined with a language model for
recognizing starts and ends of events, based on Freebase.

Acknowledgments
We thank the task organizers for their effort.

This material is based upon work supported by the Air
Force Research Laboratory (AFRL) under prime contract
no. FA8750-09-C-0181. Any opinions, findings, and
conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect
the view of the Air Force Research Laboratory. Angel X.
Chang is supported by a Stanford Graduate Fellowship.

References
A.X. Chang and C.D. Manning. 2012. SUTIME: A Li-

brary for Recognizing and Normalizing Time Expres-
sions. In LREC.

R. Hoffmann, C. Zhang, X. Ling, L. Zettlemoyer, and
D.S. Weld. 2011. Knowledge-Based Weak Supervi-
sion for Information Extraction of Overlapping Rela-
tions. In ACL.

H. Lee, Y. Peirsman, A. Chang, N. Chambers, M. Sur-
deanu, and D. Jurafsky. 2011. Stanford’s Multi-Pass
Sieve Coreference Resolution System at the CoNLL-
2011 Shared Task. In Proceedings of the CoNLL-2011
Shared Task.

M. Mintz, S. Bills, R. Snow, and D. Jurafsky. 2009. Dis-
tant supervision for relation extraction without labeled
data In ACL-IJCNLP.

S. Riedel, L. Yao, and A. McCallum. 2010. Modeling
relations and their mentions without labeled text. In
ECML/PKDD.

A. Sun, R. Grishman, W. Xu, and B. Min. 2011. New
York University 2011 System for KBP Slot Filling. In
TAC.

M. Surdeanu, D. McClosky, J. Tibshirani, J. Bauer, A.X.
Chang, V.I. Spitkovsky, and C.D. Manning. 2010. A
Simple Distant Supervision Approach for the TAC-
KBP Slot Filling Task. In TAC.


