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Abstract

Mixture modeling is a general technique for making any simple model more ex-
pressive through weighted combination. This generality and simplicity in part
explains the success of the Expectation Maximization (EM) algorithm, in which
updates are easy to derive for a wide class of mixture models. However, the likeli-
hood of a mixture model is non-convex, so EM has no known global convergence
guarantees. Recently, method of moments approaches offer global guarantees for
some mixture models, but they do not extend easily to the range of mixture mod-
els that exist. In this work, we present Polymom, an unifying framework based on
method of moments in which estimation procedures are easily derivable, just as
in EM. Polymom is applicable when the moments of a single mixture component
are polynomials of the parameters. Our key observation is that the moments of
the mixture model are a mixture of these polynomials, which allows us to cast
estimation as a Generalized Moment Problem. We solve its relaxations using
semidefinite optimization, and then extract parameters using ideas from computer
algebra. This framework allows us to draw insights and apply tools from convex
optimization, computer algebra and the theory of moments to study problems in
statistical estimation. Simulations show good empirical performance on several
models.

1 Introduction

Mixture models play a central role in machine learning and statistics, with diverse applications
including bioinformatics, speech, natural language, and computer vision. The idea of mixture
modeling is to explain data through a weighted combination of simple parametrized distributions
[1, 2]. In practice, maximum likelihood estimation via Expectation Maximization (EM) has been
the workhorse for these models, as the parameter updates are often easily derivable. However, EM
is well-known to suffer from local optima. The method of moments, dating back to Pearson [3] in
1894, is enjoying a recent revival [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] due to its strong global theoreti-
cal guarantees. However, current methods depend strongly on the specific distributions and are not
easily extensible to new ones.

In this paper, we present a method of moments approach, which we call Polymom, for estimating
a wider class of mixture models in which the moment equations are polynomial equations (Section
2). Solving general polynomial equations is NP-hard, but our key insight is that for mixture models,
the moments equations are mixtures of polynomials equations and we can hope to solve them if the
moment equations for each mixture component are simple polynomials equations that we can solve.
Polymom proceeds as follows: First, we recover mixtures of monomials of the parameters from the
data moments by solving an instance of the Generalized Moment Problem (GMP) [14, 15] (Section
3). We show that for many mixture models, the GMP can be solved with basic linear algebra and
in the general case, can be approximated by an SDP in which the moment equations are linear
constraints. Second, we extend multiplication matrix ideas from the computer algebra literature [16,
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mixture model
xt data point (RD)
zt latent mixture component ([K])
✓k parameters of component k (RP )
⇡k mixing proportion of p(z = k)

[✓k]
K
k=1 all model parameters

moments of data
�n(x) observation function
fn(✓) observation function
moments of parameters
L

y

the Riesz linear functional
y↵ y↵ = L

y

(✓↵
), ↵th moment

µ probability measure for y
y (y↵)↵ the moment sequence
Mr(y) moment matrix of degree r

sizes
D data dimensions
K mixture components
P parameters of mixture components
T data points
N constraints
[N ] {1, . . . , N}
r degree of the moment matrix
s(r) size of the degree r moment matrix
polynomials
R[✓] polynomial ring in variables ✓
N set of non-negative integers
↵,�,� vector of exponents (in NP or ND)
✓↵ monomial

QP
p=1 ✓

↵p
p

an↵ coefficient of ✓↵ in fn(✓)

Table 1: Notation: We use lowercase letters (e.g., d) for indexing, and the corresponding uppercase
letter to denote the upper limit (e.g., D, in “sizes”). We use lowercase letters (e.g., ✓k,p) for scalars,
lowercase bold letters (e.g., ✓) for vectors, and bold capital letters (e.g., M) for matrices.
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4. Recover parameter moments (y)

Mr(y) = VPV

>
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666666664
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�2
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⇠�2
6 �10

�4
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⇠2�2
12 20

3

777777775

5. Solve for parameters

Figure 1: An overview of applying the Polymom framework.

17, 18, 19] to extract the parameters by solving a certain generalized eigenvalue problem (Section
4).

Polymom improves on previous method of moments approaches in both generality and flexibility.
First, while tensor factorization has been the main driver for many of the method of moments ap-
proaches for many types of mixture models, [6, 20, 9, 8, 21, 12], each model required specific adap-
tations which are non-trivial even for experts. In contrast, Polymom provides a unified principle for
tackling new models that is as turnkey as computing gradients or EM updates. To use Polymom
(Figure 1), one only needs to provide a list of observation functions (�n) and derive their expected
values expressed symbolically as polynomials in the parameters of the specified model (fn). Poly-
mom then estimates expectations of �n and outputs parameter estimates of the specified model.
Since Polymom works in an optimization framework, we can easily incorporate constraints such
as non-negativity and parameter tying which is difficult to do in the tensor factorization paradigm.
In simulations, we compared Polymom with EM and tensor factorization and found that Polymom
performs similarly or better (Section 5). This paper assumes identifiability and infinite data. With
the exception of a few specific models in Section 5, we defer issues of general identifiability and
sample complexity to future work.
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2 Problem formulation

2.1 The method of moments estimator

In a mixture model, each data point x 2 RD is associated with a latent component z 2 [K]:

z ⇠ Multinomial(⇡), x | z ⇠ p(x;✓⇤
z), (1)

where ⇡ = (⇡1, . . . ,⇡K) are the mixing coefficients, ✓⇤
k 2 RP are the true model parameters for

the k

th mixture component, and x 2 RD is the random variable representing data. We restrict our
attention to mixtures where each component distribution comes from the same parameterized family.
For example, for a mixture of Gaussians, ✓⇤

k = (⇠

⇤
k 2 RD

,⌃

⇤
k 2 RD⇥D

) consists of the mean and
covariance of component k.

We define N observation functions �n : RD ! R for n 2 [N ] and define fn(✓) to be the expectation
of �n over a single component with parameters ✓, which we assume is a simple polynomial:

fn(✓) := E
x⇠p(x;✓)[�n(x)] =

X

↵

an↵✓
↵
, (2)

where ✓↵
=

QP
p=1 ✓

↵p
p . The expectation of each observation function E[�n(x)] can then be ex-

pressed as a mixture of polynomials of the true parameters E[�n(x)] =
PK

k=1 ⇡kE[�n(x)|z = k] =PK
k=1 ⇡kfn(✓

⇤
k).

The method of moments for mixture models seeks parameters [✓k]
K
k=1 that satisfy the moment con-

ditions

E[�n(x)] =

KX

k=1

⇡kfn(✓k). (3)

where E[�n(x)] can be estimated from the data: 1
T

PT
t=1 �n(xt)

p! E[�n(x)]. The goal of this work
is to find parameters satisfying moment conditions that can be written in the mixture of polynomial
form (3). We assume that the N observations functions �1, . . . ,�N uniquely identify the model
parameters (up to permutation of the components).
Example 2.1 (1-dimensional Gaussian mixture). Consider a K-mixture of 1D Gaussians with pa-
rameters ✓k = [⇠k,�

2
k] corresponding to the mean and variance, respectively, of the k-th component

(Figure 1: steps 1 and 2). We choose the observation functions, �(x) = [x

1
, . . . , x

6
], which have

corresponding moment polynomials, f(✓) = [⇠, ⇠

2
+�

2
, ⇠

3
+3⇠�

2
, . . . ]. For example, instantiating

(3), E[x2
] =

PK
k=1 ⇡k(⇠

2
k + �

2
k). Given �(x) and f(✓⇤

), and data, the Polymom framework can
recover the parameters. Note that the 6 moments we use have been shown by [3] to be sufficient for
a mixture of two Gaussians.
Example 2.2 (Mixture of linear regressions). Consider a mixture of linear regressions [22, 9],
where each data point x = [x, y] is drawn from component k by sampling x from an unknown
distribution independent of k and setting y = wkx + ✏, where ✏ ⇠ N (0,�

2
k). The parameters

✓k = (wk,�
2
k) are the slope and noise variance for each component k. Let us take our observation

functions to be �(x) = [x, xy, xy

2
, x

2
, . . . , x

3
y

2
], for which the moment polynomials are f(✓) =

[E[x],E[x2
]w,E[x3

]w

2
+ E[x]�2

,E[x2
], . . .].

In Example 2.1, the coefficients an↵ in the polynomial fn(✓) are just constants determined by inte-
gration. For the conditional model in Example 2.2, the coefficients depends on the data. However,
we cannot handle arbitrary data dependence, see Section D for sufficient conditions and counterex-
amples.

2.2 Solving the moment conditions

Our goal is to recover model parameters ✓⇤
1, . . . ,✓

⇤
K 2 RP for each of the K components of the

mixture model that generated the data as well as their respective mixing proportions ⇡1, . . . ,⇡K 2
R. To start, let’s ignore sampling noise and identifiability issues and suppose that we are given exact
moment conditions as defined in (3). Each condition fn 2 R[✓] is a polynomial of the parameters
✓, for n = 1, . . . , N .
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Equation 3 is a polynomial system of N equations in the K + K ⇥ P variables [⇡1, . . . ,⇡K ] and
[✓1, . . . ,✓K ] 2 RP⇥K . It is natural to ask if standard polynomial solving methods can solve (3) in
the case where each fn(✓) is simple. Unfortunately, the complexity of general polynomial equation
solving is lower bounded by the number of solutions, and each of the K! permutations of the mixture
components corresponds to a distinct solution of (3) under this polynomial system representation.
While several methods can take advantage of symmetries in polynomial systems [23, 24], they still
cannot be adapted to tractably solve (3) to the best of our knowledge.

The key idea of Polymom is to exploit the mixture representation of the moment equations (3).
Specifically, let µ⇤ be a particular “mixture” over the component parameters ✓⇤

1, . . . ,✓
⇤
k (i.e. µ⇤ is a

probability measure). Then we can express the moment conditions (3) in terms of µ⇤:

E[�n(x)] =

Z
fn(✓) µ

⇤
(d✓), where µ

⇤
(✓) =

KX

k=1

⇡k�(✓ � ✓⇤
k). (4)

As a result, solving the original moment conditions (3) is equivalent to solving the following fea-
sibility problem over µ, but where we deliberately “forget” the permutation of the components by
using µ to represent the problem:

find µ 2 M+(RP
), the set of probability measures over RP

s.t.
R
fn(✓) µ(d✓) = E[�n(x)], n = 1, . . . , N

µ is K-atomic (i.e. sum of K deltas).
(5)

If the true model parameters [✓⇤
k]

K
k=1 can be identified by the N observed moments up to permuta-

tion, then the measure µ

⇤
(✓) =

PK
k=1 ⇡k�(✓ � ✓⇤

k) solving Problem 5 is also unique.

Polymom solves Problem 5 in two steps:

1. Moment completion (Section 3): We show that Problem 5 over the measure µ can be
relaxed to an SDP over a certain (parameter) moment matrix Mr(y) whose optimal solution
is Mr(y

⇤
) =

PK
k=1 ⇡kvr(✓

⇤
k)vr(✓

⇤
k)

>, where vr(✓
⇤
k) is the vector of all monomials of

degree at most r.

2. Solution extraction (Section 4): We then take Mr(y) and construct a series of generalized
eigendecomposition problems, whose eigenvalues yield [✓⇤

k]
K
k=1.

Remark. From this point on, distributions and moments refer to µ

⇤ which is over parameters, not
over the data. All the structure about the data is captured in the moment conditions (3).

3 Moment completion

The first step is to reformulate Problem 5 as an instance of the Generalized Moment Problem (GMP)
introduced by [15]. A reference on the GMP, algorithms for solving GMPs, and its various exten-
sions is [14]. We start by observing that Problem 5 really only depends on the integrals of monomials
under the measure µ: for example, if fn(✓) = 2✓

3
1 � ✓

2
1✓2, then we only need to know the integrals

over the constituent monomials (y3,0 :=

R
✓

3
1µ(d✓) and y2,1 :=

R
✓

2
1✓2µ(d✓)) in order to evaluate

the integral over fn. This suggests that we can optimize over the (parameter) moment sequence
y = (y↵)↵2NP , rather than the measure µ itself. We say that the moment sequence y has a repre-
senting measure µ if y↵ =

R
✓↵

µ(d✓) for all ↵, but we do not assume that such a µ exists. The
Riesz linear functional L

y

: R[✓] ! R is defined to be the linear map such that L
y

(✓↵
) := y↵ and

L
y

(1) = 1. For example, L
y

(2✓

3
1 � ✓

2
1✓2 +3) = 2y3,0 � y2,1 +3. If y has a representing measure

µ, then L
y

simply maps polynomials f to integrals of f against µ.

The key idea of the GMP approach is to convexify the problem by treating y as free variables
and then introduce constraints to guarantee that y has a representing measure. First, let vr(✓) :=

[✓↵
: |↵|  r] 2 R[✓]s(r) be the vector of all s(r) monomials of degree no greater than r. Then,

define the truncated moment matrix as Mr(y) := L
y

(vr(✓)vr(✓)T), where the linear functional
L

y

is applied elementwise (see Example 3.1 below). If y has a representing measure µ, then Mr(y)

is simply a (positive) integral over rank 1 matrices vr(✓)vr(✓)T with respect to µ, so necessarily
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Mr(y) ⌫ 0 holds. Furthermore, by Theorem 1 [25], for y to have a K-atomic representing measure,
it is sufficient that rank(Mr(y)) = rank(Mr�1(y)) = K. So Problem 5 is equivalent to

find y 2 RN
(or equivalently, find M(y))

s.t.
P

↵ an↵y↵ = E[�n(x)], n = 1, . . . , N

Mr(y) ⌫ 0, y

0

= 1

rank(Mr(y)) = K and rank(Mr�1(y)) = K.

(6)

Unfortunately, the rank constraints in Problem 6 are not tractable. We use the following relaxation
to obtain our final (convex) optimization problem

minimize

y

tr(CMr(y))

s.t.
P

↵ an↵y↵ = E[�n(x)], n = 1, . . . , N

Mr(y) ⌫ 0, y

0

= 1

(7)

where C � 0 is a chosen scaling matrix. A common choice is C = Is(r) corresponding to min-
imizing the nuclear norm of the moment matrix, the usual convex relaxation for rank. Section A
discusses some other choices of C.
Example 3.1 (moment matrix for a 1-dimensional Gaussian mixture). Recall that the parameters
✓ = [⇠,�

2
] are the mean and variance of a one dimensional Gaussian. Let us choose the monomials

v2(✓) = [1, ⇠, ⇠

2
,�

2
]. Step 4 for Figure 1 shows the moment matrix when using r = 2. Each row

and column of the moment matrix is labeled with a monomial and entry (i, j) is subscripted by the
product of the monomials in row i and column j. For �2(x) := x

2, we have f2(✓) = ⇠

2
+ c, which

leads to the linear constraint y2,0 + y0,1 � E[x2
] = 0. For �3(x) = x

3, f3(✓) = ⇠

3
+ 3⇠c, leading

to the constraint y3,0 + 3y1,1 � E[x3
] = 0.

Related work. Readers familiar with the sum of squares and polynomial optimization litera-
ture [26, 27, 28, 29] will note that Problem 7 is similar to the SDP relaxation of a polynomial
optimization problem. However, in typical polynomial optimization, we are only interested in so-
lutions ✓⇤ that actually satisfy the given constraints, whereas here we are interested in K solutions
[✓⇤

k]
K
k=1, whose mixture satisfies constraints corresponding to the moment conditions (3). Within

machine learning, generalized PCA has been formulated as a moment problem [30] and the Hankel
matrix (basically the moment matrix) has been used to learn weighted automata [13]. While similar
tools are used, the conceptual approach and the problems considered are different. For example,
the moment matrix of this paper consists of unknown moments of the model parameters, whereas
exisiting works considered moments of the data that are always directly observable.

Constraints. Constraints such as non-negativity (for parameters which represent probabilities or
variances) and parameter tying [31] are quite common in graphical models and are not easily ad-
dressed with existing method of moments approaches. The GMP framework allows us to incorporate
some constraints using localizing matrices [32]. Thus, we can handle constraints during the estima-
tion procedure rather than projecting back onto the constraint set as a post-processing step. This is
necessary for models that only become identifiable by the observed moments after constraints are
taken into account. We describe this method and its learning implications in Section C.1.

Guarantees and statistical efficiency. In some circumstances, e.g. in three-view mixture models
or the mixture of linear regressions, the constraints fully determine the moment matrix – we consider
these cases in Section 5 and Appendix B. While there are no general guarantee on Problem 7, the
flat extension theorem tells us when the moment matrix corresponds to a unique solution (more
discussions in Appendix A):
Theorem 1 (Flat extension theorem [25]). Let y be the solution to Problem 7 for a particular r. If
Mr(y) ⌫ 0 and rank(Mr�1(y)) = rank(Mr(y)) then y is the optimal solution to Problem 6 for
K = rank(Mr(y)) and there exists a unique K-atomic supporting measure µ of Mr(y).

Recovering Mr(y) is linearly dependent on small perturbations of the input [33], suggesting that
the method has polynomial sample complexity for most models where the moments concentrate at
a polynomially rate. Finally, in Appendix C, we discuss a few other important considerations like
noise robustness, making Problem 7 more statistical efficient, along with some technical results on
the moment completion problem and some open problems.
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4 Solution extraction

Having completed the (parameter) moment matrix Mr(y) (Section 3), we now turn to the problem
of extracting the model parameters [✓⇤

k]
K
k=1. The solution extraction method we present is based on

ideas from solving multivariate polynomial systems where the solutions are eigenvalues of certain
multiplication matrices [16, 17, 34, 35].1 The main advantage of the solution extraction view is
that higher-order moments and structure in parameters are handled in the framework without model-
specific effort.

Recall that the true moment matrix is Mr(y
⇤
) =

PK
k=1 ⇡kv(✓

⇤
k)v(✓

⇤
k)

T, where v(✓) :=

[✓↵1
, . . . ,✓↵s(r)

] 2 R[✓]s(r) contains all the monomials up to degree r. We use ✓ = [✓1, . . . , ✓P ]

for variables and [✓⇤
k]

K
k=1 for the true solutions to these variables (note the boldface). For example,

✓

⇤
k,p := (✓⇤

k)p denotes the p

th value of the k

th component, which corresponds to a solution for the
variable ✓p. Typically, s(r) � K,P and the elements of v(✓) are arranged in a degree ordering so
that ||↵i||1  ||↵j ||1 for i  j. We can also write Mr(y

⇤
) as Mr(y

⇤
) = VPV

>, where the canon-
ical basis V := [v(✓⇤

1), . . . ,v(✓
⇤
K)] 2 Rs(r)⇥K and P := diag(⇡1, . . . ,⇡K). At the high level, we

want to factorize Mr(y
⇤
) to get V, however we cannot simply eigen-decompose Mr(y

⇤
) since V is

not orthogonal. To overcome this challenge, we will exploit the internal structure of V to construct
several other matrices that share the same factors and perform simultaneous diagonalization.

Specifically, let V[�1; . . . ;�K ] 2 RK⇥K be a sub-matrix of V with only the rows corresponding to
monomials with exponents �1, . . . ,�K 2 NP . Typically, �1, . . . ,�K are just the first K monomials
in v. Now consider the exponent �p 2 NP which is 1 in position p and 0 elsewhere, corresponding
to the monomial ✓�p

= ✓p. The key property of the canonical basis is that multiplying each column
k by a monomial ✓⇤k,p just performs a “shift” to another set of rows:

V[�1; . . . ;�K ]Dp = V

⇥
�1 + �p; . . . ;�K + �p

⇤
, where Dp := diag(✓

⇤
1,p, . . . , ✓

⇤
K,p). (8)

Note that Dp contains the p

th parameter for all K mixture components.
Example 4.1 (Shifting the canonical basis). Let ✓ = [✓1, ✓2] and the true solutions be ✓⇤

1 = [2, 3]

and ✓⇤
2 = [�2, 5]. To extract the solution for ✓1 (which are (✓⇤1,1, ✓⇤2,1)), let �1 = (1, 0),�2 = (1, 1),

and �1 = (1, 0).

V =

2

6666664

v(✓1) v(✓2)

1 1 1

✓1 2 �2

✓2 3 5

✓2
1 4 4

✓1✓2 6 �10

✓2
2 9 25

✓2
1✓2 12 20

3

7777775

 v1 v2

✓1 2 �2

✓1✓2 6 �10

�

| {z }
V[�1;�2]


2 0

0 �2

�

| {z }
diag(✓1,1,✓2,1)

=

 v1 v2

✓2
1 4 4

✓2
1✓2 12 20

�

| {z }
V[�1+�1;�2+�1]

(9)

While the above reveals the structure of V, we don’t know V. However, we recover its column space
U 2 Rs(r)⇥K from the moment matrix Mr(y

⇤
), for example with an SVD. Thus, we can relate

U and V by a linear transformation: V = UQ, where Q 2 RK⇥K is some unknown invertible
matrix.

Equation 8 can now be rewritten as:

U[�1; . . . ;�K ]QDp = U

⇥
�1 + �p; . . . ;�K + �p

⇤
Q, p = 1, . . . , P, (10)

which is a generalized eigenvalue problem where Dp are the eigenvalues and Q are the eigenvectors.
Crucially, the eigenvalues, Dp = diag(✓

⇤
1,p, . . . , ✓

⇤
K,p) give us solutions to our parameters. Note

that for any choice of �1, . . . ,�K and p 2 [P ], we have generalized eigenvalue problems that
share eigenvectors Q, though their eigenvectors Dp may differ. Corresponding eigenvalues (and
hence solutions) can be obtained by solving a simultaneous generalized eigenvalue problem, e.g., by
using random projections like Algorithm B of [4] or more robust [37] simutaneous diagonalization
algorithms [38, 39, 40].

1 [36] is a short overview and [35] is a comprehensive treatment including numerical issues.
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Table 2: Applications of the Polymom framework. See Appendix B.2 for more details.

Mixture of linear regressions
Model Observation functions
x = [x, �] is observed where x 2 RD is drawn
from an unspecified distribution and
� ⇠ N (w · x,�2

I), and � is known. The
parameters are ✓⇤

k = (wk) 2 RD .

�↵,b(x) = x

↵
�

b for 0  |↵|  3, b 2 [2].
Moment polynomials
f↵,1(✓) =

PP
p=1 E[x

↵+�p
]wp

f↵,2(✓) = E[x↵
]�

2
+

PP
p,q=1 E[x

↵
xpxq]wpwq ,

where the �p 2 NP is 1 in position p and 0 else-
where.

Mixture of Gaussians
Model Observation functions
x 2 RD is observed where x is drawn from a
Gaussian with diagonal covariance:
x ⇠ N (⇠, diag(c)). The parameters are
✓⇤
k = (⇠k, ck) 2 RD+D .

�↵(x) = x

↵ for 0  |↵|  4.
Moment polynomials
f↵(✓) =

QD
d=1 h↵d(⇠d, cd).

2

Multiview mixtures
Model Observation functions
With 3 views, x = [x

(1)
, x

(2)
, x

(3)
] is observed

where x

(1)
, x

(2)
, x

(3) 2 RD and x

(`) is drawn
from an unspecified distribution with mean ⇠(`)

for ` 2 [3]. The parameters are
✓⇤
k = (⇠(1)

k , ⇠(2)
k , ⇠(3)

k ) 2 RD+D+D .

�ijk(x) = x

(1)
i x

(2)
j x

(3)
k where 1  i, j, k  D.

Moment polynomials
fijk(✓) = ⇠

(1)
i ⇠

(2)
j ⇠

(3)
k .

We describe one approach to solve (10), which is similar to Algorithm B of [4]. The idea is to take P
random weighted combinations of the equations (10) and solve the resulting (generalized) eigende-
composition problems. Let R 2 RP⇥P be a random matrix whose entries are drawn from N (0, 1).
Then for each q = 1, . . . Q, solve U[�1; . . . ;�K ]

�1
⇣PP

p=1 Rq,pU
⇥
�1 + �p; . . . ;�K + �p

⇤⌘
Q =

QDq . The resulting eigenvalues can be collected in ⇤ 2 RP⇥K , where ⇤q,k = Dq,k,k. Note that
by definition ⇤q,k =

PP
p=1 Rq,p✓

⇤
k,p, so we can simply invert to obtain [✓⇤

1, . . . ,✓
⇤
K ] = R

�1
⇤.

Although this simple approach does not have great numerical properties, these eigenvalue problems
are solvable if the eigenvalues [�q,1, . . . ,�q,K ] are distinct for all q, which happens with probability
1 as long as the parameters ✓⇤

k are different from each other.

In Appendix B.1, we show how a prior tensor decomposition algorithm from [4] can be seen as
solving Equation 10 for a particular instantiation of �1, . . .�K .

5 Applications

Let us now look at some applications of Polymom. Table 2 presents several models with corre-
sponding observation functions and moment polynomials. It is fairly straightforward to write down
observation functions for a given model. The moment polynomials can then be derived by comput-
ing expectations under the model– this step can be compared to deriving gradients for EM.

We implemented Polymom for several mixture models in Python (code: https://github.

com/sidaw/polymom). We used CVXOPT to handle the SDP and the random projections algo-
rithm from to extract solutions. In Table 3, we show the relative error maxk ||✓k � ✓⇤

k||2/||✓
⇤
k||2

averaged over 10 random models of each class.

In the rest of this section, we will discuss guarantees on parameter recovery for each of these models.

2
h↵(⇠, c) =

Pb↵/2c
i=0 a↵,↵�2i⇠

↵�2i
c

i and a↵,i be the absolute value of the coefficient of the degree i term
of the ↵

th (univariate) Hermite polynomial. For example, the first few are h1(⇠, c) = ⇠, h2(⇠, c) = ⇠

2
+ c,

h3(⇠, c) = ⇠

3
+ 3⇠c, h4(⇠, c) = ⇠

4
+ 6⇠

2
c+ 3c

2.
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Methd. EM TF Poly EM TF Poly EM TF Poly
Gaussians K,D T = 10

3
T = 10

4
T = 10

5

spherical 2, 2 0.37 2.05 0.58 0.24 0.73 0.29 0.19 0.36 0.14
diagonal 2, 2 0.44 2.15 0.48 0.48 4.03 0.40 0.38 2.46 0.35
constrained 2, 2 0.49 7.52 0.38 0.47 2.56 0.30 0.34 3.02 0.29
Others K,D T = 10

4
T = 10

5
T = 10

6

3-view 3, 3 0.38 0.51 0.57 0.31 0.33 0.26 0.36 0.16 0.12
lin. reg. 2, 2 - - 3.51 - - 2.60 - - 2.52

Table 3: T is the number of samples, and the error metric is defined above. Methods: EM: sklearn
initialized with k-means using 5 random restarts; TF: tensor power method implemented in Python;
Poly: Polymom by solving Problem 7. Models: for mixture of Gaussians, we have � ⇡ 2||µ1 �
µ2||2. spherical and diagonal describes the type of covariance matrix. The mean parameters of
constrained Gaussians satisfies µ1 + µ2 = 1. The best result is bolded. TF only handles spherical
variance, but it was of interest to see what TF does if the data is drawn from mixture of Gaussians
with diagonal covariance, these results are in strikeout.

Mixture of Linear Regressions. We can guarantee that Polymom can recover parameters for this
model when K  D by showing that Problem 6 can be solved exactly: observe that while no entry
of the moment matrix M3(y) is directly observed, each observation gives us a linear constraint on
the entries of the moment matrix and when K  D, there are enough equations that this system
admits an unique solution for y.

Chaganty et al. [9] were also able to recover parameters for this model under the same conditions
(K  D) by solving a series of low-rank tensor recovery problems, which ultimately requires the
computation of the same moments described above. In contrast, the Polymom framework makes the
dependence on moments upfront and takes care of the heavy-lifting in a problem-agnostic manner.
Lastly, the model can be extended to handle per component noise by including � as a parameter, an
extension that is not possible using the method in [9].

Multiview Mixtures. We can guarantee parameter recovery when K  D by proving that Prob-
lem 7 can be solved exactly (see Section B.2).

Mixture of Gaussians. In this case however, the moment conditions are non-trivial and we cannot
guarantee recovery of the true parameters. However, Polymom is guaranteed to recover a mixture of
Gaussians that match the moments. We can also apply constraints to the model: consider the case
of 2d mixture where the mean parameters for all components lies on a parabola ⇠1 � ⇠

2
2 = 0. In this

case, we just need to add constraints to Problem 7: y(1,0)+� � y(0,2)+� = 0 for all � 2 N2 up to
degree |�|  2r� 2. By incorporating these constraints at estimation time, we can possibly identify
the model parameters with less moments. See Section C for more details.

6 Conclusion
We presented an unifying framework for learning many types of mixture models via the method
of moments. For example, for the mixture of Gaussians, we can apply the same algorithm to both
mixtures in 1D needing higher-order moments [3, 11] and mixtures in high dimensions where lower-
order moments suffice [6]. The Generalized Moment Problem [15, 14] and its semidefinite relax-
ation hierarchies is what gives us the generality, although we rely heavily on the ability of nuclear
norm minimization to recover the underlying rank. As a result, while we always obtain parame-
ters satisfying the moment conditions, there are no formal guarantees on consistent estimation. The
second main tool is solution extraction, which characterizes a more general structure of mixture
models compared the tensor structure observed by [6, 4]. This view draws connections to the liter-
ature on solving polynomial systems, where many techniques might be useful [35, 18, 19]. Finally,
through the connections we’ve drawn, it is our hope that Polymom can make the method of mo-
ments as turnkey as EM on more latent-variable models, as well as improve the statistical efficiency
of method of moments procedures.
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[17] H. M. Möller and H. J. Stetter. Multivariate polynomial equations with multiple zeros solved by matrix

eigenproblems. Numerische Mathematik, 70(3):311–329, 1995.
[18] B. Sturmfels. Solving systems of polynomial equations. American Mathematical Society, 2002.
[19] D. Henrion and J. Lasserre. Detecting global optimality and extracting solutions in GloptiPoly. In Positive

polynomials in control, pages 293–310, 2005.
[20] A. Anandkumar, R. Ge, D. Hsu, and S. Kakade. A tensor spectral approach to learning mixed membership

community models. In Conference on Learning Theory (COLT), pages 867–881, 2013.
[21] A. Anandkumar, R. Ge, and M. Janzamin. Provable learning of overcomplete latent variable models:

Semi-supervised and unsupervised settings. arXiv preprint arXiv:1408.0553, 2014.
[22] K. Viele and B. Tong. Modeling with mixtures of linear regressions. Statistics and Computing, 12(4):315–

330, 2002.
[23] B. Sturmfels. Algorithms in invariant theory. Springer Science & Business Media, 2008.
[24] R. M. Corless, K. Gatermann, and I. S. Kotsireas. Using symmetries in the eigenvalue method for poly-

nomial systems. Journal of Symbolic Computation, 44(11):1536–1550, 2009.
[25] R. E. Curto and L. A. Fialkow. Solution of the truncated complex moment problem for flat data, volume

568. American Mathematical Society, 1996 1996.
[26] J. B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on

Optimization, 11(3):796–817, 2001.
[27] M. Laurent. Sums of squares, moment matrices and optimization over polynomials. In Emerging appli-

cations of algebraic geometry, pages 157–270, 2009.
[28] P. A. Parrilo and B. Sturmfels. Minimizing polynomial functions. Algorithmic and quantitative real

algebraic geometry, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 60:83–
99, 2003.

[29] P. A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Mathematical program-
ming, 96(2):293–320, 2003.

[30] N. Ozay, M. Sznaier, C. M. Lagoa, and O. I. Camps. GPCA with denoising: A moments-based convex
approach. In Computer Vision and Pattern Recognition (CVPR), pages 3209–3216, 2010.

9


