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Named Entity Recognition 

 Germany’s representative to the 
European Union’s veterinary 
committee Werner Zwingman said on 
Wednesday consumers should … 

 IL-2 gene expression and NF-kappa B 
activation through CD28 requires 
reactive oxygen production by            
5-lipoxygenase. 

Why NER? 

  Question Answering 

  Textual Entailment 

  Coreference Resolution 

  Computational Semantics 

  … 

NER Data/Bake-Offs 

  CoNLL-2002 and CoNLL-2003 (British newswire) 
  Multiple languages: Spanish, Dutch, English, 

German 
  4 entities: Person, Location, Organization, Misc 

  MUC-6 and MUC-7 (American newswire) 
  7 entities: Person, Location, Organization, Time, 

Date, Percent, Money 
  ACE 

  5 entities: Location, Organization, Person, FAC, 
GPE 

  BBN (Penn Treebank) 
  22 entities: Animal, Cardinal, Date, Disease, … 

Hidden Markov Models (HMMs) 

  Generative  
  Find parameters to maximize P(X,Y) 

  Assumes features are independent 
  When labeling Xi future observations are taken 

into account (forward-backward) 

MaxEnt Markov Models (MEMMs) 

  Discriminative 
  Find parameters to maximize P(Y|X) 

  No longer assume that features are independent 
  Do not take future observations into account (no 

forward-backward) 
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Conditional Random Fields (CRFs) 

  Discriminative 
  Doesn’t assume that features are independent 
  When labeling Yi future observations are taken 

into account 
 The best of both worlds! 

Model Trade-offs 

Speed 
Discrim vs.  
Generative 

Normalization 

HMM very fast generative local 

MEMM mid-range discriminative local 

CRF kinda slow discriminative global 

Stanford NER 

  CRF 

  Features are more important than model 

  How to train a new model 

Our Features 

  Word features: current word, previous word, 
next word, all words within a window 

  Orthographic features:  
  Jenny         Xxxx 
  IL-2            XX-# 

  Prefixes and Suffixes: 
  Jenny         <J, <Je, <Jen, …, nny>, ny>, y> 

  Label sequences 
  Lots of feature conjunctions 

Distributional Similarity Features 

  Large, unannotated corpus 
  Each word will appear in contexts - induce a 

distribution over contexts 
  Cluster words based on how similar their 

distributions are 
  Use cluster IDs as features 
  Great way to combat sparsity 
  We used Alexander Clark’s distributional 

similarity code (easy to use, works great!) 
  200 clusters, used 100 million words from 

English gigaword corpus 

Training New Models 

Reading data: 
  edu.stanford.nlp.sequences.DocumentReaderAndWriter 

  Interface for specifying input/output format 
  edu.stanford.nlp.sequences.ColumnDocumentReaderAndWriter: 
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Training New Models 

  Creating features 
  edu.stanford.nlp.sequences.FeatureFactory 

  Interface for extracting features from data 
  Makes sense if doing something very different (e.g., 

Chinese NER) 
  edu.stanford.nlp.sequences.NERFeatureFactory 

  Easiest option: just add new features here 
  Lots of built in stuff: computes orthographic features on-

the-fly 
  Specifying features 

  edu.stanford.nlp.sequences.SeqClassifierFlags 
  Stores global flags 
  Initialized from Properties file 

Training New Models 

  Other useful stuff 
  useObservedSequencesOnly 

  Speeds up training/testing 
  Makes sense in some applications, but not all 

  window 
  How many previous tags do you want to be able to 

condition on? 

  feature pruning 
  Remove rare features 

  Optimizer: LBFGS 

Distributed Models 

  Trained on CoNLL, MUC and ACE 

  Entities: Person, Location, Organization 

  Trained on both British and American newswire, 
so robust across both domains 

  Models with and without the distributional 
similarity features 

Incorporating NER into Systems 

  NER is a component technology 
  Common approach:  

  Label data 
  Pipe output to next stage 

  Better approach:  
  Sample output at each stage 
  Pipe sampled output to next stage 
  Repeat several times 
  Vote for final output 

  Sampling NER outputs is fast 

Textual Entailment Pipeline 

  Topological sort of annotators 

<NER, Parser, SRL, Coreference, RTE> 

Parser 

Coreference 

NE Recognizer 

SR Labeler 

RTE 

Sampling Example 

Yes 
ARG0[…] 
ARG1[…] 

ARG-TMP[…] 

Parser 

Coreference 

NE Recognizer 

SR Labeler 

RTE 
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No 

Sampling Example 

Yes 
ARG0[…] 
ARG1[…] 

ARG-LOC[…] 

Parser 

Coreference 

NE Recognizer 

SR Labeler 

RTE 

Yes 
No 
Yes 

Sampling Example 

ARG0[…] 
ARG1[…] 

ARG-TMP[…] 

Parser 

Coreference 

NE Recognizer 

SR Labeler 

RTE 

Yes 

Yes 
No 
Yes 

Sampling Example 

ARG0[…] 
ARG1[…] 
ARG2[…] 

Parser 

Coreference 

NE Recognizer 

SR Labeler 

RTE 

Yes 
No 
Yes 
Yes 

Sampling Example 

No 

ARG0[…] 
ARG1[…] 

ARG-TMP[…] 

Parser 

Coreference 

NE Recognizer 

SR Labeler 

RTE 

Yes 
No 
Yes 
Yes 
No 

Sampling Example 

Parser 

Coreference 

NE Recognizer 

SR Labeler 

RTE 

Yes 
No 
Yes 
Yes 
No 

Conclusions 

  NER is a useful technology 

  Stanford NER Software  
  Has pretrained models for english newswire 
  Easy to train new models 
  http://nlp.stanford.edu/software 

  Questions? 


